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Abstract

This document describes the GraphSAT solver that implements Boolean satisfiability testing combined with
graph constraints.
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1 Introduction

GraphSAT is a SAT modulo Graphs (..., 2017) solver. It solves Boolean satisfiability problems extended with graph
constraints for acyclicity and s-t-reachability.

The syntax is based on the DIMACS CNF format for pure Boolean satisfiability problems. Additionally, a graph
consisting of nodes and arcs can be included in an input file, with the requirement that the graph is acyclicity, or that
certain pairs of nodes are reachable or unreachable from each other. GraphSAT then finds a truth-value assignment
to all of the variables so that all clauses are true, and the graph induced by the arc variables assigned true are acyclic,
and for pairs of nodes for which the corresponding reachability or unreachability variable is assigned true, the second
node is respectively reachable or unreachable from the first.

GraphSAT has been designed with a broad range of applications in mind, including knowledge representation lan-
guages such as Answer Set Programming and logics for Inductive Definitions, as well as various other discrete
combinatorial problems that can be expressed in terms of graphs.

Implementation techniques behind the solver are described in conference publications [3], similarly to applications
[2, 1].

2 Syntax

The syntax includes the DIMACS CNF format. In the beginning of the input file there is a line indicating the number
of atomic proposotions and the number of clauses, for example

p cnf 6 3

that says that the number of atomic propositions is 6 (numbered from 1 to 6), and the number of clauses is 3.

2.1 Example

The extension of the DIMACS syntax is achieved by supplying information about the graphs and graph constraints
in the comments of the DIMACS syntax. Each comment line in the DIMACS syntax starts with the letter “c”, and
conventional SAT solvers ignore all the characters after “c” until the end of the line.

Here is an example of a SAT modulo Graphs problem, consisting of three clauses and an acyclicity constraint on a
4-node graph with 6 arcs. The 6 atomic propositions are associated with the 6 arcs: an arc proposition being true
means that the arc is included in the graph. All false arcs, as well as arcs that are not mentioned, are absent from the
graph.

p cnf 6 3
c graph 4
c node 0 1
c node 1 2
c node 2 2
c node 3 1
c arc 1 0 1
c arc 2 1 2
c arc 3 1 3
c arc 4 2 3
c arc 5 2 0
c arc 6 3 0
c endgraph
c acyc
c
c In this example the arcs are a cycle 0->1->2->3 with diagnonals 1->3 2->0.
c EXAMPLE 0 -> 1
c EXAMPLE ˆ |
c EXAMPLE | V



c EXAMPLE 3 <- 2
c
c
1 2 0
3 4 0
5 6 0

Given this problem instance, GraphSAT tries to assign either value true or false to each atomic proposition, to satisfy
the clauses and the graph constraints. In this case, the clauses represent disjunctions of two arc variables,

A0,1 ∨A1,2

A1,3 ∨A2,3

A2,0 ∨A3,0

Parts of GraphSAT input are described in the next sections.

2.2 Representing Graphs

Every graph specification consists of two parts, the nodes, and the arcs.

The graph specification starts with

p graph N

where N is an integer indicating the number of nodes in the graph. The nodes are numbered from 0 to N − 1. This
is followed by N declarations of the nodes’ arities, that is, the number of arcs starting from the node in question:

c node i arity

where i is the index of the node in the range 0 to N − 1, and arity is an integer ≥ 0.

This is followed by declarations of arcs of the form

c arc v s t

where v is an index of an atomic proposition, and s and t are indices of nodes in the range 0 to N −1, indicating that
the atomic proposition v being true means that there is an arc from s to t in the graph. The number of arc declarations
with s as the source node must match the arity indicated in the node declaration.

The graph specification ends with the following line.

c endgraph

2.3 Representing Acyclicity Constraints

For the specified graph the acyclicity constraint is required to hold by simply specifying the following.

c acyc

This means that GraphSAT considers only those truth-value assignments to all atomic propositions satisfiable that, in
addition to satisfying all clauses, correspond to an acyclic graph formed from those arcs for which the corresponding
atomic proposition is true.

2.4 Representing Reachability Constraints

Reachability constraints are specified as follows.

c greachable s m t1 l1 t2 l2 · · · tm lm



Here literals li are associated with the presence of a path from s to ti in the graph, for every i ∈ {1, . . . ,m}.
Formally, if li is true, then there is a path from s to ti.

Unreachability constraints are specified as

c gnonreach m s1 t1 l1 s2 t2 l2 · · · sm tm lm

which similarly associate literals li with the absence of a path from si to ti in the graph, for every i ∈ {1, . . . ,m}.
Formally, if li is true, then there is no path from si to ti.

An arbitarary number of reachability and unreachability constraints may be given, and they can be combined with
the acyclicity constraint.

Reachability from one node s to other nodes is preferably given on one line, as the constraint that contains all target
nodes of paths from s is more powerful than separate constraints from s to some subsets of those nodes.

The motivation for having both unreachability and reachability is the need to express don’t care: a negated reacha-
bility does not require that a node is reachable from another, it only states that the node is not required to be reached
from another.
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