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Introduction

This Tutorial

I Why is Complexity (very) important in Planning?
I Brief overview of basic concepts
I NP vs. PSPACE
I Succinctness vs. Complexity
I Planning and Scheduling outside PSPACE
I types of search trees vs. plans

I OR-trees for sequential plans
I AND-OR-trees for branching plans

I Solvability vs. Unsolvability
I Numeric state variables
I Continuous change
I Belief states and Partial Observability
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Introduction

What?

I How much resources (CPU time, memory) are needed?
I Most problems exponential. Question: How exponential?
I Connections between problems: (polynomial time) transformations
⇒ complexity classes
⇒ classification of problems by classes

Much of standard complexity theory [Pap94] relevant to planning
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Introduction

Why?

Complexity is one of the important properties of an algorithm.
I Correctness: Are the solutions correct?
I Completeness: Is a solution found whenever one exists?
I Complexity: Is resource use of the algorithm reasonable?

If complexity is unknown, it is difficult to do anything about it.
⇒ Analyze. Then look at ways attacking it.
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Introduction

What Is It Good For? (In Planning)
Research on Algorithms

Is an algorithm as good as it can be?
I Does it use more resources than it should? Why?

Research on Modeling Languages

What can be expressed in a modeling language?
I Comparisons between modeling languages
I Mappings between languages (time, size)

Research on Applications

How should an application problem be solved?
I Match or a mismatch with a modeling language?
I Match or a mismatch with an algorithm?
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Introduction

Big O in Analysis of Algorithms
Standard tool in analyzing algorithms is asymptotic resource consumption in
the worst-case.

Big O - Asymptotic growth rates

function f(n) is in O(g(n)) iff

f(n) ≤ c · g(n)

for all n ≥ 0 and some c.

For input of size n:
...
logarithmic resource consumption O(log n)
polynomial resource consumption O(nk)

exponential resource consumption O(2n
k

)

doubly exponential resource consumption O(22
nk

)
...
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Introduction

Coarseness of Big O vs. Complexity Classes

best algorithms
complexity class memory big O time big O
co-NP O(p(n)) O(2n)
NP O(p(n)) O(2n)
PSPACE O(p(n)) O(2n)

I Big practical differences between (co-)NP and PSPACE!
I Big O only applies to algorithms, not directly to problems.

=⇒ Structural Complexity Theory: Theory of Complexity Classes
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Robotics

Applicability to Reactive Control (Robotics)

I Literature mostly about complete plans, covering all future situations
I Selecting only the next action sometimes believed to reduce complexity

(as a part of the sense-plan-act loop in closed-loop control)
I Most results in the literature apply to both

I on-line planning (only first action chosen, repeatedly)
I off-line planning (full plan constructed before execution)

I Existence of a complete plan (satisfying some criteria) equivalent to the
possibility of selecting the first/next action (satisfying same criteria).
⇒ No complexity reduction by doing things on-line
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Basics Transformations

Polynomial-Time Transformations

Polynomial-time transformations (Karp reductions)

A decision problem X is transformed in polynomial time to decision problem Y
(written X ≤p Y ) if and only if there is function f such that

1. f is computable in polynomial time, and
2. for all s, s ∈ X if and only if f(s) ∈ Y .

Significance:
1. If X ≤p Y and Y has an algorithm, then so has X.
2. If X ≤p Y and Y is easy to solve (tractable), then so is X.
3. If X ≤p Y and X is difficult to solve (intractable), then so is Y .
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Basics Transformations

Polynomial-Time Transformations

Example

Let G = 〈N,E〉 be a graph. Then G is in 3-COLORABLE if and only if the
conjunction of the following is in SAT.

(Ri ∨Gi ∨Bi) for all i ∈ N (1)
¬(Ri ∧Rj) for all {i, j} ∈ E (2)
¬(Gi ∧Gj) for all {i, j} ∈ E (3)
¬(Bi ∧Bj) for all {i, j} ∈ E (4)

Therefore 3-COLORABLE≤pSAT
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Basics Transformations

Insights from PTIME Transformations (1970ies)
[Coo71, Kar72]

Intractable problems

Tractable problems

NP-complete co-NP-complete
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Basics Transformations

Resource Requirements of Computation

Computation:
I sequence of states of the

computation device, indicating the
contents of its memory/registers/...

I changes from state to state follow the
"program" of the device

memory
︷ ︸︸ ︷
01101101101100101011
10110110101101101100
01101101101100110011
01001010110110101101
00110011001010110110
10110110101100110011
01001010101101101100
00110011110110101101
00110011001010110110
01101100110011001010
01101101110011110011
01001010110110101101
00110011001010110110
01101100110011001010
10110110101100011010
00110011110110001100
01101100001110011010





time
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Basics Turing Machines

Turing Machines
Turing machine configuration (state, R/W head, tape contents):

q1
↓
A B B A B � � � � � · · ·

Transitions of the Turing machine:

old state read write new state move
q1 A A q3 L
q1 B A q1 N
q1 � A q1 N
q1 | | q1 R
q2 A B q2 R
q2 B A q2 R
q2 � B q1 N
q2 | | q1 R
q3 A B q1 L
q3 B B q3 R
q3 � B q1 N
q3 | | q1 R
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Basics Turing Machines

Turing machines

Definition
A Turing machine 〈Σ, Q, δ, q0, g〉 consists of

1. an alphabet Σ (a set of symbols),
2. a set Q of internal states,
3. a transition function δ that maps 〈q, s〉 to a tuple 〈s′, q′,m〉 where q, q′ ∈ Q,

s ∈ Σ ∪ {|,�}, s′ ∈ Σ ∪ {|} and m ∈ {L,N,R}.
4. an initial state q0 ∈ Q, and
5. a labeling g : Q→ {accept, reject,∃} of states.
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Basics Turing Machines

Nondeterministic Computation: Graph Coloring
Nodes 1, 2 and 3 are made Red, Green or Blue.

R G B

R G B R G B R G B

R G B R G B R G B R G B R G B R G B R G B R G B R G B
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Basics Turing Machines

Nondeterministic Computation

I Resource-limited nondeterministic Turing machines (NDTM) represent
search with bounds on memory use and size of search tree.

I Non-determinism = choice of branch of a computation/search tree
I Memory consumption = max. used tape in any configuration
I Time consumption = max. path length in the tree

17 / 73

Basics NP

The Complexity Class NP: Motivation

It was observed in early 1970ies [Coo71] that there are many important
problems that
I do not seem to have polynomial-time algorithms,
I can be easily solved with non-deterministic TMs, and
I can be transformed to each other in poly-time.
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Basics NP

The Complexity Class NP

Definition
A decision problem X gives a yes or no answer for a given input x, often
written as a set membership question x ∈ X?

Definition
The complexity class NP consists of decision problems that are solvable by a
non-deterministic Turing machine in a polynomial number of steps.
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Basics NP

NP-Hardness and NP-Completeness

Definition (NP-hardness)

A decision problem Y is NP-hard iff X ≤p Y for every X in NP.

Definition (NP-completeness)

A decision problem Y is NP-complete iff Y is NP-hard and Y is in NP.
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Basics NP

NP-Completeness of SAT

Theorem
SAT (the satisfiability problem of the propositional logic) is NP-complete.

Proof.
Membership in NP: guess a satisfying assignment.

NP-hardness: Proof similar to Planning as SAT [KS92]. Express
non-deterministic TM executions of given length: change between two
consecutive configurations easily expressible as a Boolean formula.
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Basics More Classes

More Complexity Classes

Definition
DTIME(f ) is the class of decision problems solved by a deterministic Turing
machine in O(f(n)) time when n is the input string length.

Definition
NTIME(f ) is defined similarly for nondeterministic Turing machines.

Definition
DSPACE(f ) is the class of decision problems solved by a deterministic Turing
machine in O(f(n)) space when n is the input string length.

22 / 73

Basics More Classes

Definitions of Complexity Classes
Complexity classes express worst-case time and memory requirements.

P =
⋃

k≥0 DTIME(nk)

EXP =
⋃

k≥0 DTIME(2n
k

)

2-EXP =
⋃

k≥0 DTIME(22
nk

)

NP =
⋃

k≥0 NTIME(nk)

NEXP =
⋃

k≥0 NTIME(2n
k

)

2-NEXP =
⋃

k≥0 NTIME(22
nk

)

PSPACE =
⋃

k≥0 DSPACE(nk)

EXPSPACE =
⋃

k≥0 DSPACE(2n
k

)

NLOGSPACE = NSPACE(log n)
NPSPACE =

⋃
k≥0 NSPACE(nk)

NEXPSPACE =
⋃

k≥0 NSPACE(2n
k

)
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Basics More Classes

Overview of Complexity Classes

2-NEXP

2-EXP

EXPSPACE

NEXP

EXP

PSPACE

PH

NP

P

NLOGSPACE

provably intractable

presumably intractable

tractable
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Classical Planning

Classical Planning

Properties:
I untimed (asynchronous): one action a time, change instantaneous
I one known initial state
I actions are deterministic, environment otherwise static
I objective is to reach a goal state (finite executions)

This is the state space search problem also in
I problem-solving (search) in AI
I reachability analysis in Computer-Aided Verification
I model-checking (non-modal safety properties) in Computer-Aided

Verification
I other areas
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Classical Planning PSPACE-hardness

Simulation of PSPACE Turing machines

Match polynomially space-bounded Turing machines ∼ classical planning:

1. Turing machine configurations ∼ states
2. Turing machine transitions ∼ actions
3. initial configuration ∼ initial state
4. accepting configurations ∼ goal states

For simulation of PSPACE TMs a number of state variables that is polynomial
in input string length suffices.
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Classical Planning PSPACE-hardness

Simulation of PSPACE Turing machines

Turing machine with Σ = {u, v, w}, input string of length n = 4, space bound
p(n) = n2 = 16, internal states Q = {q1, q2, q3}.

State variables in the corresponding planning problem:

state q1: q1
state q2: q2
state q3: q3

tape cell: 0 1 2 3 · · · 15 16
R/W head: h0 h1 h2 h3 · · · h15 h16

symbol u: u1 u2 u3 · · · u15 u16

symbol v: v1 v2 v3 · · · v15 v16
symbol w: w1 w2 w3 · · · w15 w16

symbol �: �1 �2 �3 · · · �15 �16
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Classical Planning PSPACE-hardness

Simulation of PSPACE Turing machines
Example
True state variables marked with color:

state variable values
TM config. work tape R/W head state plan
q1|ûvuvv� ûvwuvwuvwuvwuvw h0h1h2h3h4h5h6 q1q2q3 au,q1,1
q2|vv̂uvv� uvwûvwuvwuvwuvw h0h1h2h3h4h5h6 q1q2q3 av,q2,2
q3|vwûvv� uvwuvwûvwuvwuvw h0h1h2h3h4h5h6 q1q2q3 au,q3,3
q3|vwvv̂v� uvwuvwuvwûvwuvw h0h1h2h3h4h5h6 q1q2q3 av,q3,4
q1|vwv̂wv� uvwuvwûvwuvwuvw h0h1h2h3h4h5h6 q1q2q3 av,q1,3
q3|vŵuwv� uvwûvwuvwuvwuvw h0h1h2h3h4h5h6 q1q2q3 aw,q3,2

q3|v̂uuwv� ûvwuvwuvwuvwuvw h0h1h2h3h4h5h6 q1q2q3 av,q3,1

Preconditions of au,q1,1 are u1, q1, h1.

Effects of au,q1,1 are
I ¬q1, q2 (state changes from q1 to q2)
I ¬h1, h2 (head location changes from 1 to 2)
I ¬u1, v1 (symbol u replaced by v at location 1)

obtained directly from the TMs transition function.
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Classical Planning PSPACE-hardness

Classical Planning is in PSPACE

I The PSPACE-hardness result provides a lower bound on the complexity
of deterministic planning.

I We next give an upper bound on the complexity by showing that the
problem belongs to PSPACE.

I Hence the problem is PSPACE-complete, determining complexity exactly.
I It is not known whether NP6=PSPACE or even P6=PSPACE, but the result

is still useful because for all practical purposes we can assume that
NP6=PSPACE.

I For example, we may conclude that there is, most likely, no
polynomial-time transformation from planning to SAT.
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Classical Planning PSPACE Membership

Classical Planning is in PSPACE
Proof idea

Recursive algorithm for testing m-step reachability between two states with
logm memory consumption.

reach(s0,s8,3) | |
reach(s,s′,2) | | |
reach(s,s′,1) | | | | |
reach(s,s′,0) | | | | | | | | |

s0 s1 s2 s3 s4 s5 s6 s7 s8
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Classical Planning PSPACE Membership

Classical planning is in PSPACE
Algorithm

Testing whether a plan of length ≤ 2n exists:

PROCEDURE reach(s,s′,n)
IF n = 0 THEN

IF s = s’ OR s′ = execa(s) for some action a
THEN RETURN true
ELSE RETURN false;

ELSE
FOR all states s′′ DO

IF reach(s,s′′,n− 1) AND reach(s′′,s′,n− 1)
THEN RETURN true

END
RETURN false;

This algorithm does not store the plan anywhere (would violate the space
bound!) but could be modified to output it.
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Classical Planning NP vs. PSPACE

NP vs. PSPACE for Planning and Scheduling

I Many types of NP-complete problems solved effectively: guess a solution
(with good heuristics!)

I Same far harder with PSPACE-problems:
I polynomial number of guesses not enough
I either exponential number of guesses, or
I search tree is an AND-OR tree.

Why real-world planning and scheduling often feasible?

I Schedules always and sequential plans often polynomial size
⇒ problems are in NP!

I effective heuristics available
I real-world P&S

I some plan/schedule (with unlimited resources) trivial to find
I solvable with scalable constraint-based methods (MILP, CP, ...)
I good schedules can be found for very large problem instances

I IPC benchmark sets (classical/temporal planning without optimization)
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Succinctness

Succinctness

There is no one unique classical planning problem. Differences:
succinctness/compactness of input to the planning algorithm.

1. flat/enumerative representation (as a graph: nodes, arcs)
2. ground actions (can represent an exponential size graph)
3. schematic actions (can represent a doubly exponential size graph)
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Succinctness

Planning Problems given as a Graph
Blocks world with three blocks
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Succinctness

Planning Problems as Sets of (Ground) Actions

state variables: RonG, RonB, GonR, GonB, BonR, BonG, Rontable, Gontable, Bontable, Rclr,
Gclr, Bclr

actions:
moveRfromGtoB = ({RonG,Rclr,Bclr}, {¬RonG, RonB,Gclr,¬Bclr})
moveRfromBtoG = ({RonB,Rclr,Gclr}, {¬RonB, RonG,Bclr,¬Gclr})
moveGfromRtoB = ({GonR,Gclr,Bclr}, {¬GonR, GonB,Rclr,¬Bclr})
moveGfromBtoR = ({GonB,Gclr,Rclr}, {¬GonB, GonR,Bclr,¬Rclr})
...

This representation has size O(n3) for n of blocks, representing 1, 3, 13, 73,
501, 4051, 37633, 394353, 4596553, ... states for 1, 2, 4, 5, ... blocks,
respectively.
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Succinctness

Planning Problems as Sets of Schematic Actions

variable domains: BLOCKS = { A,B,C,. . .}
state variables: on(x,y), ontable(x), clr(x) for all x,y∈BLOCKS

actions:
move(b,s,t) = ({ t 6=b6=s, on(b,s), clr(b), clr(t)}, {¬on(b,s), on(b,t), clr(s), ¬clr(t)})
movefromtable(b,t) = ({ b 6=t, ontable(b), clr(b), clr(t)}, {¬ontable(b), on(b,t)})
movetotable(b,s) = ({ b6=s, on(b,s), clr(b)}, {¬on(b,s), ontable(b)})

where {b, s, t} ⊆BLOCKS

This representation has size O(n) for n blocks.

(Ground actions exponential in size of schematic actions only when arity of
predicates grows.)
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Succinctness

Succinctness

Question: Succinctness Reduces Complexity?

Some problems are hard to solve, due to their large size.
If problem instance can be represented succinctly (compact, factored
representation), will it have regularities that allow solving it more efficiently?

Answer to a high number of graph problems is negative [GW83, Loz88, LB90]:
cost of computation in real-world terms is not reduced (in worst case)
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Succinctness

Levels of Succinctness for Classical Planning

representation complexity
graph (nodes, arcs) NLOGSPACE-complete
ground actions PSPACE-complete [GW83, Loz88, LB90, Byl94]
schematic actions EXPSPACE-complete, undecidable [ENS91]

In the worst case, for graphs of size 22
n

these respectively correspond to
1. O(n) time in size O(22

n

) of a graph
2. O(2n) time in size O(2n) ground action set
3. O(22

n

) time in size O(n) schematic action set
This is same O(22

n

) in the size of the graph, in all three cases!!
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Succinctness

Complexity vs. Expressivity

Classical planning can be expressed in terms of
I STRIPS

I preconditions: conjunctions of x = 0, x = 1
I effects: assignments x := 0, x := 1

I PDDL/ADL: STRIPS + Boolean connectives ∧, ∨, ¬ and IF-THEN
I arbitrary propositional formulas (cf. BDD-based model-checking

[BCL+94], Planning as SAT [KS92, Rin09])

Can the same planning problems be expressed in all formalisms?
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Succinctness

Complexity vs. Expressivity

Different answers, depending what is meant:

1. In all cases, planning is PSPACE-complete, so decision problems “is
there a plan” intertranslatable.1

2. Translations so that the transition graph remains the same:
I Translating PDDL/ADL into STRIPS exponential size/time.
I Translating Boolean formulas into PDDL exponential size/time.

Lessons:
I Even if complexity is same, a modeling language can be exponentially

more compact.
I Simpler languages do not (necessarily) offer performance benefits, and

may make compact modeling impossible.

1Under partial observability, features of actions has stronger impact [Rin04].
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Succinctness

Extensions to Classical Planning in PSPACE

I Many extensions within PSPACE possible:
I bounded integers, bounded rationals, floats, enums
I any other bounded-size data
I more complex effects

I assignments a[x] := b[y] [Gef00]
I sequential composition (e1 ; e2) [Rin08]

I Practical works often unnecessarily limit to STRIPS, even when more
general language straigthforward to handle [Rin06, Rin08]

I Extensions that make classical planning unsolvable discussed later...
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Succinctness

Classical Planning: Theory vs. Practice

How do actual algorithms perform w.r.t. theoretical requirements?

All algorithms use exponential time. Memory consumption differs:

memory consumption
algorithm poly-long plans exp-long plans
A∗, greedy best-first exp exp
IDA∗ poly exp
BDDs [CBM90, BCM+92] exp exp
SAT with DPLL [KS92] poly exp
SAT with CDCL exp 2 exp
QBF with QBF-DPLL [Rin01] poly poly 3

Best practical algorithms exceed theoretical requirements. Why?

2Conflict-Driven Clause Learning algorithm [MSS99, MMZ+01] has no inherent exponential
memory requirement, but also no clear polynomial bounds.

3Test if a plan exists. Output plan one action at a time.
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Outside PSPACE

Outside NP and PSPACE

classical

temporal

MDP / conditional full obs.

conditional partial obs.

POMDP optimalcontinuous/hybrid

PSPACE

EXP

EXPSPACE

2-EXP

undecidable
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Outside PSPACE

Classical Planning

a0: go to work

a1: write a report

a2: go to grocery store

a3: buy food

a4: go home

a5: make dinner

s0

s1

s2

s3

s4

s5

s6

I time not explicit
I an action ∼ change between two

consecutive states
I only one action at a time
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Temporal Planning

Temporal Planning
bo

il
po

ta
to

es

bo
il

ca
rr

ot
s

fr
y

la
m

b
sl

ic
e

la
m

b

pe
el

ca
rr

ot
s lis

te
n

to
ra

di
o

I More realistic model for many applications
I Several actions simultaneously active
I An action can change the state at several

time points
I Possibility of taking an action depends on

other current and earlier actions
I Effects of an action might depend on

whether other actions are taken
simultaneously
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Temporal Planning

Temporal State = Static State + Event Agenda
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Temporal Planning EXPSPACE-Completeness

EXPSPACE: Exponentially Long Tapes

I If (static) state is poly-size, where to encode an exponentially long tape?
I Dynamic state (= future events) can be exponential
I Proof idea: spread the TM working tape over timeline [Rin07b]

1st configuration 2nd configuration
time 0 1 2 3 4 5 6 7 8 9 . . .

cell 0 1 2 3 4 0 1 2 3 4 . . .

R/W 0 1 0 0 0 0 1 0 0 0

A 0 1 0 0 0 0 0 0 0 0
B 0 0 1 0 0 0 1 1 0 0
� 0 0 0 1 1 0 0 0 1 1
| 1 0 0 0 0 1 0 0 0 0

q0 1 1 1 1 1 1 0 0 0 0
q1 0 0 0 0 0 0 1 1 1 1
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Branching Plans

Branching Plans

Sequential plans (= classical planning) sufficient when
I there is unique (known) initial state,
I all actions are deterministic

When actions or the environment non-deterministic, action choice depends on
the past (observations)
I More complex forms of plans required:

I mapping from states to actions (full observability)
I mapping from belief states to actions (partial observability)
I programs/controllers that output actions (partial observability)

I Complexity far higher, from EXP to 2-EXP to unsolvable
[Lit97, Rin04, MHC03].

I Analyzed with alternating Turing machines (ATM).

48 / 73



Branching Plans Alternation

Computation with Alternation (AND-OR Trees)

∃

∀ ∀

∃ ∃ ∃ ∃

∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀
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Branching Plans Alternation

Alternating Turing Machines

Alternating Turing Machines

Nondeterministic Turing machines = search trees with OR nodes
Alternating Turing machines = search trees with both AND and OR nodes

Originally defined to model games and game trees [CKS81].

Definition
A Turing machine 〈Σ, Q, δ, q0, g〉 consists of

1. an alphabet Σ (a set of symbols),
2. a set Q of internal states,
3. a transition function δ that maps 〈q, s〉 to a set of tuples 〈s′, q′,m〉 where

q, q′ ∈ Q, s ∈ Σ ∪ {|,�}, s′ ∈ Σ and m ∈ {L,N,R}.
4. an initial state q0 ∈ Q, and
5. a labeling g : Q→ {accept, reject,∃,∀} of states.

50 / 73

Branching Plans Alternation

Complexity Classes Defined with Alternation
Complexity Classes

Define complexity classes

APTIME =
⋃

k≥0 ATIME(nk)

APSPACE =
⋃

k≥0 ASPACE(nk)

AEXP =
⋃

k≥0 ATIME(2n
k

)

AEXPSPACE =
⋃

k≥0 ASPACE(2n
k

)

Interestingly, poly-space = alternating poly-time, and
exponential time = alternating poly-space [CKS81]:

PSPACE = APTIME
EXPSPACE = AEXP

EXP = APSPACE
2-EXP = AEXPSPACE
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Branching Plans Alternation

EXP-hardness of Conditional Planning

Proof idea: Extend the PSPACE-hardness proof for classical planning with
alternation (computation of an ATM is an AND/OR tree.)

I ∃ states: one deterministic action is chosen to the plan, from several
possible ones.

I ∀ states: one nondeterministic action simulates all possible transitions.
I In branching plans, actions for ∀ states are followed by observing the new

configuration and continuing the simulation accordingly.
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Branching Plans Alternation

Simulation of Deterministic Turing Machines

PSPACE-hardness proof of classical planning

∃

∃

∃

acc

one deterministic action

one deterministic action

one deterministic action
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Branching Plans Alternation

Simulation of Nondeterministic Turing Machines

PSPACE=NPSPACE-hardness proof of classical planning

∃

∃ ∃

∃ ∃ ∃ ∃

acc rej rej acc acc acc rej acc

two deterministic actions

two deterministic actions two deterministic actions
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Branching Plans Alternation

Simulation of Alternating Turing Machines

EXP=APSPACE-hardness proof with full observability

∀

∃ ∃

∃ ∀ ∀ ∃

acc rej rej acc acc acc rej acc

one nondeterministic action

two deterministic actions two deterministic actions
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Branching Plans Alternation

Correspondence of ATM executions and plans

An accepting computation tree is mapped to a plan:
1. ∃-configuration to action
2. ∀-configuration to observation + action

∀

∃ ∃

∃ ∀ ∀ ∃

acc rej rej acc acc acc rej acc

ND action

obs1 obs2

D action D action

D action D action
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Branching Plans Alternation

Partial Observability vs. Branching
Extending Classical Planning with Branching and Observability Limitations [Rin04]

deterministic

nondeterministic (full obs.) nondeterministic (no obs.)

nondeterministic (partial obs.)

branching belief states

branchingbelief states

PSPACE

EXP EXPSPACE

2-EXP

alternation exponential tape

alternationexponential tape

Alternation ∼ Branching plans

Exponential tape ∼ Belief states
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Branching Plans Polynomial Hierarchy

Polynomial Hierarchy
Polynomial Hierarchy = PSPACE problems with limited alternation

Example

Σp
2 = trees with polynomial depth and ∃ nodes followed by ∀ nodes

∃

∃ ∃

∀ ∀ ∀ ∀

∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀
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The Polynomial Hierarchy

P

NP = Σp
1 co-NP = Πp

1

∆p
2

Σp
2 Πp

2

∆p
3

Σp
3 Πp

3

PH =
⋃

i≥1(Σp
i ∪Πp

i )

PSPACE

∃ ∀

∃∀ ∀∃

∃∀∃ ∀∃∀

all finite ∃∀∃ · · · ∀∃

unbounded ∃∀∃∀ · · ·
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Planning Problems in the Polynomial Hierarchy

Conditional Planning with Poly-Size Plans

There is (∃) a poly-size plan such that
for all contingencies (∀) there is an execution leading to goals.

Most naturally expressed as a quantified Boolean formula [Sto76] with prefix
∃∀∃ [Rin99], but as the problem is in Σp

2, it is possible to express it as a QBF
with prefix ∃∀ [Rin07a].

Conditional Planning with Short Executions

There is (∃) an action such that for all (∀) contingencies
there is (∃) an action such that for all (∀) contingencies
· · · a goal state is reached.

Conditional planning with n consecutive actions expressible as a QBF prefix
n alternations︷ ︸︸ ︷
∃∀∃ · · · ∃ [Tur02]. This covers all of the Polynomial Hierarchy.
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Uncertainty in Scheduling

Most of the scheduling problems encountered in practice are NP-complete

Harder scheduling problems typically involve uncertainty:

I expected makespan for stochastic task durations #P-hard [Hag88]
I scheduling with uncertain resource availability [Rin13]

I general case PSPACE-complete
I Πp

2-complete when all uncertainty resolved in the beginning
I Σp

2-complete when contingent schedules are poly-size
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Unsolvability

Limits of Planning: Unsolvability

I Planning is not only hard, but sometimes impossible.
I Main forms of unsolvable planning problems:

I unbounded numeric state variables (extension of classical planning)
I continuous change (planning with hybrid systems)
I optimal probabilistic planning with partial observability (optimal POMDPs)

I Impossibility associated with infinite state spaces and states of
unbounded size
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Unsolvability Numeric Variables

Unsolvability from (Unbounded) Numbers

Integer problems are unsolvable:
I Halting problem of general Turing machines encodable in classical

planning + integers
I unbounded working tape (∼ two stacks of a pushdown automaton)

encodable with:
I two integer variables, +1, test-even, multiply-by-2, divide-by-2
I two integer variables, +1, test-even, shift-left, shift-right
I other possibilities

I Practical ways out:
I use bounded integers only (finite-state systems)
I consider bounded length plans only (⇒ incompleteness)
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Unsolvability POMDP

Probabilistic Plans and Partial Observability

I Need to remember unbounded past history
I Finding optimal POMDP policies unsolvable [MHC03]
I Proof by reduction from probabilistic automata [Paz71]
I Practical ways out:

I finite-memory policies (⇒ incompleteness) [MKKC99, LLS+99, CCD16]
I practical POMDP algorithms don’t prove optimality
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Unsolvability Continuous and Hybrid Systems

Hybrid Systems: Solvability vs. Unsolvability

I reachability (planning) for hybrid systems undecidable
[HKPV95, CL00, PC07]

I many problems with only 2 continuous variables undecidable!!
I decidable cases for reachability: rectangular automata [HKPV95], 2-d

PCD [AMP95], planar multi-polynomial systems [ČV96]
I semi-decision procedures: no termination when plans don’t exist.
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Unsolvability Continuous and Hybrid Systems

Hybrid Systems: Solvability vs. Unsolvability
Approaches to Tackle the Unsolvability

I Limit to short plans (⇒ incompleteness)
I non-linear polynomials highly complex [BD07], with functions like sine

unsolvable
I some solvers give approximation guarantees [GKC13]
I approximation problematic due to lack of stability: small errors accumulate

and cause plans to fail
I A main challenge is the development of more useful solvers
I General-purpose methods in general do not work well
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Conclusion

Complexity Classes vs. Types of Planning
undecidable

2-EXP

EXPSPACE

NEXP

EXP

PSPACE

PH

NP

P

NLOGSPACE

optimal POMDPs [MHC03]

non-deterministic partially observable [Rin04]

unobservable (“conformant”) [HJ00, Rin04]

probabilistic [Lit97];succinct MDPs [MGLA00]

classical [Byl94]

branching plans with short executions [Tur02]

poly-length classical

flat MDPs [PT87]

s-t reachability
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