
Computational Complexity of Automated Planning and
Scheduling

Introduction
Applicability to Robotics
Structural Complexity Theory

Transformations
Turing Machines
Complexity Classes

Classical Planning
PSPACE-hardness
Idea

Algorithm
Succinctness
Outside PSPACE
Branching Plans

Alternating Computation
Unsolvability

Numeric State Variables
Optimal POMDP Policies
Continuous and Hybrid Systems

References

1 / 73

Computational Complexity in Automated Planning
and Scheduling

Jussi Rintanen
Department of Computer Science

Aalto University
Helsinki, Finland

ICAPS 2016, London, U.K.

2 / 73

Introduction

This Tutorial

I Why is Complexity (very) important in Planning?
I Brief overview of basic concepts
I NP vs. PSPACE
I Succinctness vs. Complexity
I Planning and Scheduling outside PSPACE
I types of search trees vs. plans

I OR-trees for sequential plans
I AND-OR-trees for branching plans

I Solvability vs. Unsolvability
I Numeric state variables
I Continuous change
I Belief states and Partial Observability

3 / 73

Introduction

What?

I How much resources (CPU time, memory) are needed?
I Most problems exponential. Question: How exponential?
I Connections between problems: (polynomial time) transformations
⇒ complexity classes
⇒ classification of problems by classes

Much of standard complexity theory [Pap94] relevant to planning

4 / 73

Introduction

Why?

Complexity is one of the important properties of an algorithm.
I Correctness: Are the solutions correct?
I Completeness: Is a solution found whenever one exists?
I Complexity: Is resource use of the algorithm reasonable?

If complexity is unknown, it is difficult to do anything about it.
⇒ Analyze. Then look at ways attacking it.

5 / 73

Introduction

What Is It Good For? (In Planning)
Research on Algorithms

Is an algorithm as good as it can be?
I Does it use more resources than it should? Why?

Research on Modeling Languages

What can be expressed in a modeling language?
I Comparisons between modeling languages
I Mappings between languages (time, size)

Research on Applications

How should an application problem be solved?
I Match or a mismatch with a modeling language?
I Match or a mismatch with an algorithm?

6 / 73

Introduction

Big O in Analysis of Algorithms
Standard tool in analyzing algorithms is asymptotic resource consumption in
the worst-case.

Big O - Asymptotic growth rates

function f(n) is in O(g(n)) iff

f(n) ≤ c · g(n)

for all n ≥ 0 and some c.

For input of size n:
...
logarithmic resource consumption O(log n)
polynomial resource consumption O(nk)

exponential resource consumption O(2n
k

)

doubly exponential resource consumption O(22
nk

)
...

7 / 73

Introduction

Coarseness of Big O vs. Complexity Classes

best algorithms
complexity class memory big O time big O
co-NP O(p(n)) O(2n)
NP O(p(n)) O(2n)
PSPACE O(p(n)) O(2n)

I Big practical differences between (co-)NP and PSPACE!
I Big O only applies to algorithms, not directly to problems.

=⇒ Structural Complexity Theory: Theory of Complexity Classes

8 / 73

Robotics

Applicability to Reactive Control (Robotics)

I Literature mostly about complete plans, covering all future situations
I Selecting only the next action sometimes believed to reduce complexity

(as a part of the sense-plan-act loop in closed-loop control)
I Most results in the literature apply to both

I on-line planning (only first action chosen, repeatedly)
I off-line planning (full plan constructed before execution)

I Existence of a complete plan (satisfying some criteria) equivalent to the
possibility of selecting the first/next action (satisfying same criteria).
⇒ No complexity reduction by doing things on-line

9 / 73

Basics Transformations

Polynomial-Time Transformations

Polynomial-time transformations (Karp reductions)

A decision problem X is transformed in polynomial time to decision problem Y
(written X ≤p Y) if and only if there is function f such that

1. f is computable in polynomial time, and
2. for all s, s ∈ X if and only if f(s) ∈ Y .

Significance:
1. If X ≤p Y and Y has an algorithm, then so has X.
2. If X ≤p Y and Y is easy to solve (tractable), then so is X.
3. If X ≤p Y and X is difficult to solve (intractable), then so is Y .

10 / 73

Basics Transformations

Polynomial-Time Transformations

Example

Let G = 〈N,E〉 be a graph. Then G is in 3-COLORABLE if and only if the
conjunction of the following is in SAT.

(Ri ∨Gi ∨Bi) for all i ∈ N (1)
¬(Ri ∧Rj) for all {i, j} ∈ E (2)
¬(Gi ∧Gj) for all {i, j} ∈ E (3)
¬(Bi ∧Bj) for all {i, j} ∈ E (4)

Therefore 3-COLORABLE≤pSAT

11 / 73

Basics Transformations

Insights from PTIME Transformations (1970ies)
[Coo71, Kar72]

Intractable problems

Tractable problems

NP-complete co-NP-complete

12 / 73

Basics Transformations

Resource Requirements of Computation

Computation:
I sequence of states of the

computation device, indicating the
contents of its memory/registers/...

I changes from state to state follow the
"program" of the device

memory
︷ ︸︸ ︷
01101101101100101011
10110110101101101100
01101101101100110011
01001010110110101101
00110011001010110110
10110110101100110011
01001010101101101100
00110011110110101101
00110011001010110110
01101100110011001010
01101101110011110011
01001010110110101101
00110011001010110110
01101100110011001010
10110110101100011010
00110011110110001100
01101100001110011010

time

13 / 73

Basics Turing Machines

Turing Machines
Turing machine configuration (state, R/W head, tape contents):

q1
↓
A B B A B � � � � � · · ·

Transitions of the Turing machine:

old state read write new state move
q1 A A q3 L
q1 B A q1 N
q1 � A q1 N
q1 | | q1 R
q2 A B q2 R
q2 B A q2 R
q2 � B q1 N
q2 | | q1 R
q3 A B q1 L
q3 B B q3 R
q3 � B q1 N
q3 | | q1 R

14 / 73

Basics Turing Machines

Turing machines

Definition
A Turing machine 〈Σ, Q, δ, q0, g〉 consists of

1. an alphabet Σ (a set of symbols),
2. a set Q of internal states,
3. a transition function δ that maps 〈q, s〉 to a tuple 〈s′, q′,m〉 where q, q′ ∈ Q,

s ∈ Σ ∪ {|,�}, s′ ∈ Σ ∪ {|} and m ∈ {L,N,R}.
4. an initial state q0 ∈ Q, and
5. a labeling g : Q→ {accept, reject,∃} of states.

15 / 73

Basics Turing Machines

Nondeterministic Computation: Graph Coloring
Nodes 1, 2 and 3 are made Red, Green or Blue.

R G B

R G B R G B R G B

R G B R G B R G B R G B R G B R G B R G B R G B R G B

16 / 73

Basics Turing Machines

Nondeterministic Computation

I Resource-limited nondeterministic Turing machines (NDTM) represent
search with bounds on memory use and size of search tree.

I Non-determinism = choice of branch of a computation/search tree
I Memory consumption = max. used tape in any configuration
I Time consumption = max. path length in the tree

17 / 73

Basics NP

The Complexity Class NP: Motivation

It was observed in early 1970ies [Coo71] that there are many important
problems that
I do not seem to have polynomial-time algorithms,
I can be easily solved with non-deterministic TMs, and
I can be transformed to each other in poly-time.

18 / 73

Basics NP

The Complexity Class NP

Definition
A decision problem X gives a yes or no answer for a given input x, often
written as a set membership question x ∈ X?

Definition
The complexity class NP consists of decision problems that are solvable by a
non-deterministic Turing machine in a polynomial number of steps.

19 / 73

Basics NP

NP-Hardness and NP-Completeness

Definition (NP-hardness)

A decision problem Y is NP-hard iff X ≤p Y for every X in NP.

Definition (NP-completeness)

A decision problem Y is NP-complete iff Y is NP-hard and Y is in NP.

20 / 73

Basics NP

NP-Completeness of SAT

Theorem
SAT (the satisfiability problem of the propositional logic) is NP-complete.

Proof.
Membership in NP: guess a satisfying assignment.

NP-hardness: Proof similar to Planning as SAT [KS92]. Express
non-deterministic TM executions of given length: change between two
consecutive configurations easily expressible as a Boolean formula.

21 / 73

Basics More Classes

More Complexity Classes

Definition
DTIME(f) is the class of decision problems solved by a deterministic Turing
machine in O(f(n)) time when n is the input string length.

Definition
NTIME(f) is defined similarly for nondeterministic Turing machines.

Definition
DSPACE(f) is the class of decision problems solved by a deterministic Turing
machine in O(f(n)) space when n is the input string length.

22 / 73

Basics More Classes

Definitions of Complexity Classes
Complexity classes express worst-case time and memory requirements.

P =
⋃

k≥0 DTIME(nk)

EXP =
⋃

k≥0 DTIME(2n
k

)

2-EXP =
⋃

k≥0 DTIME(22
nk

)

NP =
⋃

k≥0 NTIME(nk)

NEXP =
⋃

k≥0 NTIME(2n
k

)

2-NEXP =
⋃

k≥0 NTIME(22
nk

)

PSPACE =
⋃

k≥0 DSPACE(nk)

EXPSPACE =
⋃

k≥0 DSPACE(2n
k

)

NLOGSPACE = NSPACE(log n)
NPSPACE =

⋃
k≥0 NSPACE(nk)

NEXPSPACE =
⋃

k≥0 NSPACE(2n
k

)

23 / 73

Basics More Classes

Overview of Complexity Classes

2-NEXP

2-EXP

EXPSPACE

NEXP

EXP

PSPACE

PH

NP

P

NLOGSPACE

provably intractable

presumably intractable

tractable

24 / 73

Classical Planning

Classical Planning

Properties:
I untimed (asynchronous): one action a time, change instantaneous
I one known initial state
I actions are deterministic, environment otherwise static
I objective is to reach a goal state (finite executions)

This is the state space search problem also in
I problem-solving (search) in AI
I reachability analysis in Computer-Aided Verification
I model-checking (non-modal safety properties) in Computer-Aided

Verification
I other areas

25 / 73

Classical Planning PSPACE-hardness

Simulation of PSPACE Turing machines

Match polynomially space-bounded Turing machines ∼ classical planning:

1. Turing machine configurations ∼ states
2. Turing machine transitions ∼ actions
3. initial configuration ∼ initial state
4. accepting configurations ∼ goal states

For simulation of PSPACE TMs a number of state variables that is polynomial
in input string length suffices.

26 / 73

Classical Planning PSPACE-hardness

Simulation of PSPACE Turing machines

Turing machine with Σ = {u, v, w}, input string of length n = 4, space bound
p(n) = n2 = 16, internal states Q = {q1, q2, q3}.

State variables in the corresponding planning problem:

state q1: q1
state q2: q2
state q3: q3

tape cell: 0 1 2 3 · · · 15 16
R/W head: h0 h1 h2 h3 · · · h15 h16

symbol u: u1 u2 u3 · · · u15 u16

symbol v: v1 v2 v3 · · · v15 v16
symbol w: w1 w2 w3 · · · w15 w16

symbol �: �1 �2 �3 · · · �15 �16

27 / 73

Classical Planning PSPACE-hardness

Simulation of PSPACE Turing machines
Example
True state variables marked with color:

state variable values
TM config. work tape R/W head state plan
q1|ûvuvv� ûvwuvwuvwuvwuvw h0h1h2h3h4h5h6 q1q2q3 au,q1,1
q2|vv̂uvv� uvwûvwuvwuvwuvw h0h1h2h3h4h5h6 q1q2q3 av,q2,2
q3|vwûvv� uvwuvwûvwuvwuvw h0h1h2h3h4h5h6 q1q2q3 au,q3,3
q3|vwvv̂v� uvwuvwuvwûvwuvw h0h1h2h3h4h5h6 q1q2q3 av,q3,4
q1|vwv̂wv� uvwuvwûvwuvwuvw h0h1h2h3h4h5h6 q1q2q3 av,q1,3
q3|vŵuwv� uvwûvwuvwuvwuvw h0h1h2h3h4h5h6 q1q2q3 aw,q3,2

q3|v̂uuwv� ûvwuvwuvwuvwuvw h0h1h2h3h4h5h6 q1q2q3 av,q3,1

Preconditions of au,q1,1 are u1, q1, h1.

Effects of au,q1,1 are
I ¬q1, q2 (state changes from q1 to q2)
I ¬h1, h2 (head location changes from 1 to 2)
I ¬u1, v1 (symbol u replaced by v at location 1)

obtained directly from the TMs transition function.
28 / 73

Classical Planning PSPACE-hardness

Classical Planning is in PSPACE

I The PSPACE-hardness result provides a lower bound on the complexity
of deterministic planning.

I We next give an upper bound on the complexity by showing that the
problem belongs to PSPACE.

I Hence the problem is PSPACE-complete, determining complexity exactly.
I It is not known whether NP6=PSPACE or even P6=PSPACE, but the result

is still useful because for all practical purposes we can assume that
NP6=PSPACE.

I For example, we may conclude that there is, most likely, no
polynomial-time transformation from planning to SAT.

29 / 73

Classical Planning PSPACE Membership

Classical Planning is in PSPACE
Proof idea

Recursive algorithm for testing m-step reachability between two states with
logm memory consumption.

reach(s0,s8,3) | |
reach(s,s′,2) | | |
reach(s,s′,1) | | | | |
reach(s,s′,0) | | | | | | | | |

s0 s1 s2 s3 s4 s5 s6 s7 s8

30 / 73

Classical Planning PSPACE Membership

Classical planning is in PSPACE
Algorithm

Testing whether a plan of length ≤ 2n exists:

PROCEDURE reach(s,s′,n)
IF n = 0 THEN

IF s = s’ OR s′ = execa(s) for some action a
THEN RETURN true
ELSE RETURN false;

ELSE
FOR all states s′′ DO

IF reach(s,s′′,n− 1) AND reach(s′′,s′,n− 1)
THEN RETURN true

END
RETURN false;

This algorithm does not store the plan anywhere (would violate the space
bound!) but could be modified to output it.

31 / 73

Classical Planning NP vs. PSPACE

NP vs. PSPACE for Planning and Scheduling

I Many types of NP-complete problems solved effectively: guess a solution
(with good heuristics!)

I Same far harder with PSPACE-problems:
I polynomial number of guesses not enough
I either exponential number of guesses, or
I search tree is an AND-OR tree.

Why real-world planning and scheduling often feasible?

I Schedules always and sequential plans often polynomial size
⇒ problems are in NP!

I effective heuristics available
I real-world P&S

I some plan/schedule (with unlimited resources) trivial to find
I solvable with scalable constraint-based methods (MILP, CP, ...)
I good schedules can be found for very large problem instances

I IPC benchmark sets (classical/temporal planning without optimization)

32 / 73

Succinctness

Succinctness

There is no one unique classical planning problem. Differences:
succinctness/compactness of input to the planning algorithm.

1. flat/enumerative representation (as a graph: nodes, arcs)
2. ground actions (can represent an exponential size graph)
3. schematic actions (can represent a doubly exponential size graph)

33 / 73

Succinctness

Planning Problems given as a Graph
Blocks world with three blocks

34 / 73

Succinctness

Planning Problems as Sets of (Ground) Actions

state variables: RonG, RonB, GonR, GonB, BonR, BonG, Rontable, Gontable, Bontable, Rclr,
Gclr, Bclr

actions:
moveRfromGtoB = ({RonG,Rclr,Bclr}, {¬RonG, RonB,Gclr,¬Bclr})
moveRfromBtoG = ({RonB,Rclr,Gclr}, {¬RonB, RonG,Bclr,¬Gclr})
moveGfromRtoB = ({GonR,Gclr,Bclr}, {¬GonR, GonB,Rclr,¬Bclr})
moveGfromBtoR = ({GonB,Gclr,Rclr}, {¬GonB, GonR,Bclr,¬Rclr})
...

This representation has size O(n3) for n of blocks, representing 1, 3, 13, 73,
501, 4051, 37633, 394353, 4596553, ... states for 1, 2, 4, 5, ... blocks,
respectively.

35 / 73

Succinctness

Planning Problems as Sets of Schematic Actions

variable domains: BLOCKS = { A,B,C,. . .}
state variables: on(x,y), ontable(x), clr(x) for all x,y∈BLOCKS

actions:
move(b,s,t) = ({ t 6=b6=s, on(b,s), clr(b), clr(t)}, {¬on(b,s), on(b,t), clr(s), ¬clr(t)})
movefromtable(b,t) = ({ b 6=t, ontable(b), clr(b), clr(t)}, {¬ontable(b), on(b,t)})
movetotable(b,s) = ({ b6=s, on(b,s), clr(b)}, {¬on(b,s), ontable(b)})

where {b, s, t} ⊆BLOCKS

This representation has size O(n) for n blocks.

(Ground actions exponential in size of schematic actions only when arity of
predicates grows.)

36 / 73

Succinctness

Succinctness

Question: Succinctness Reduces Complexity?

Some problems are hard to solve, due to their large size.
If problem instance can be represented succinctly (compact, factored
representation), will it have regularities that allow solving it more efficiently?

Answer to a high number of graph problems is negative [GW83, Loz88, LB90]:
cost of computation in real-world terms is not reduced (in worst case)

37 / 73

Succinctness

Levels of Succinctness for Classical Planning

representation complexity
graph (nodes, arcs) NLOGSPACE-complete
ground actions PSPACE-complete [GW83, Loz88, LB90, Byl94]
schematic actions EXPSPACE-complete, undecidable [ENS91]

In the worst case, for graphs of size 22
n

these respectively correspond to
1. O(n) time in size O(22

n

) of a graph
2. O(2n) time in size O(2n) ground action set
3. O(22

n

) time in size O(n) schematic action set
This is same O(22

n

) in the size of the graph, in all three cases!!

38 / 73

Succinctness

Complexity vs. Expressivity

Classical planning can be expressed in terms of
I STRIPS

I preconditions: conjunctions of x = 0, x = 1
I effects: assignments x := 0, x := 1

I PDDL/ADL: STRIPS + Boolean connectives ∧, ∨, ¬ and IF-THEN
I arbitrary propositional formulas (cf. BDD-based model-checking

[BCL+94], Planning as SAT [KS92, Rin09])

Can the same planning problems be expressed in all formalisms?

39 / 73

Succinctness

Complexity vs. Expressivity

Different answers, depending what is meant:

1. In all cases, planning is PSPACE-complete, so decision problems “is
there a plan” intertranslatable.1

2. Translations so that the transition graph remains the same:
I Translating PDDL/ADL into STRIPS exponential size/time.
I Translating Boolean formulas into PDDL exponential size/time.

Lessons:
I Even if complexity is same, a modeling language can be exponentially

more compact.
I Simpler languages do not (necessarily) offer performance benefits, and

may make compact modeling impossible.

1Under partial observability, features of actions has stronger impact [Rin04].
40 / 73

Succinctness

Extensions to Classical Planning in PSPACE

I Many extensions within PSPACE possible:
I bounded integers, bounded rationals, floats, enums
I any other bounded-size data
I more complex effects

I assignments a[x] := b[y] [Gef00]
I sequential composition (e1 ; e2) [Rin08]

I Practical works often unnecessarily limit to STRIPS, even when more
general language straigthforward to handle [Rin06, Rin08]

I Extensions that make classical planning unsolvable discussed later...

41 / 73

Succinctness

Classical Planning: Theory vs. Practice

How do actual algorithms perform w.r.t. theoretical requirements?

All algorithms use exponential time. Memory consumption differs:

memory consumption
algorithm poly-long plans exp-long plans
A∗, greedy best-first exp exp
IDA∗ poly exp
BDDs [CBM90, BCM+92] exp exp
SAT with DPLL [KS92] poly exp
SAT with CDCL exp 2 exp
QBF with QBF-DPLL [Rin01] poly poly 3

Best practical algorithms exceed theoretical requirements. Why?

2Conflict-Driven Clause Learning algorithm [MSS99, MMZ+01] has no inherent exponential
memory requirement, but also no clear polynomial bounds.

3Test if a plan exists. Output plan one action at a time.
42 / 73

Outside PSPACE

Outside NP and PSPACE

classical

temporal

MDP / conditional full obs.

conditional partial obs.

POMDP optimalcontinuous/hybrid

PSPACE

EXP

EXPSPACE

2-EXP

undecidable

43 / 73

Outside PSPACE

Classical Planning

a0: go to work

a1: write a report

a2: go to grocery store

a3: buy food

a4: go home

a5: make dinner

s0

s1

s2

s3

s4

s5

s6

I time not explicit
I an action ∼ change between two

consecutive states
I only one action at a time

44 / 73

Temporal Planning

Temporal Planning
bo

il
po

ta
to

es

bo
il

ca
rr

ot
s

fr
y

la
m

b
sl

ic
e

la
m

b

pe
el

ca
rr

ot
s lis

te
n

to
ra

di
o

I More realistic model for many applications
I Several actions simultaneously active
I An action can change the state at several

time points
I Possibility of taking an action depends on

other current and earlier actions
I Effects of an action might depend on

whether other actions are taken
simultaneously

45 / 73

Temporal Planning

Temporal State = Static State + Event Agenda

46 / 73

Temporal Planning EXPSPACE-Completeness

EXPSPACE: Exponentially Long Tapes

I If (static) state is poly-size, where to encode an exponentially long tape?
I Dynamic state (= future events) can be exponential
I Proof idea: spread the TM working tape over timeline [Rin07b]

1st configuration 2nd configuration
time 0 1 2 3 4 5 6 7 8 9 . . .

cell 0 1 2 3 4 0 1 2 3 4 . . .

R/W 0 1 0 0 0 0 1 0 0 0

A 0 1 0 0 0 0 0 0 0 0
B 0 0 1 0 0 0 1 1 0 0
� 0 0 0 1 1 0 0 0 1 1
| 1 0 0 0 0 1 0 0 0 0

q0 1 1 1 1 1 1 0 0 0 0
q1 0 0 0 0 0 0 1 1 1 1

47 / 73

Branching Plans

Branching Plans

Sequential plans (= classical planning) sufficient when
I there is unique (known) initial state,
I all actions are deterministic

When actions or the environment non-deterministic, action choice depends on
the past (observations)
I More complex forms of plans required:

I mapping from states to actions (full observability)
I mapping from belief states to actions (partial observability)
I programs/controllers that output actions (partial observability)

I Complexity far higher, from EXP to 2-EXP to unsolvable
[Lit97, Rin04, MHC03].

I Analyzed with alternating Turing machines (ATM).

48 / 73

Branching Plans Alternation

Computation with Alternation (AND-OR Trees)

∃

∀ ∀

∃ ∃ ∃ ∃

∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀

49 / 73

Branching Plans Alternation

Alternating Turing Machines

Alternating Turing Machines

Nondeterministic Turing machines = search trees with OR nodes
Alternating Turing machines = search trees with both AND and OR nodes

Originally defined to model games and game trees [CKS81].

Definition
A Turing machine 〈Σ, Q, δ, q0, g〉 consists of

1. an alphabet Σ (a set of symbols),
2. a set Q of internal states,
3. a transition function δ that maps 〈q, s〉 to a set of tuples 〈s′, q′,m〉 where

q, q′ ∈ Q, s ∈ Σ ∪ {|,�}, s′ ∈ Σ and m ∈ {L,N,R}.
4. an initial state q0 ∈ Q, and
5. a labeling g : Q→ {accept, reject,∃,∀} of states.

50 / 73

Branching Plans Alternation

Complexity Classes Defined with Alternation
Complexity Classes

Define complexity classes

APTIME =
⋃

k≥0 ATIME(nk)

APSPACE =
⋃

k≥0 ASPACE(nk)

AEXP =
⋃

k≥0 ATIME(2n
k

)

AEXPSPACE =
⋃

k≥0 ASPACE(2n
k

)

Interestingly, poly-space = alternating poly-time, and
exponential time = alternating poly-space [CKS81]:

PSPACE = APTIME
EXPSPACE = AEXP

EXP = APSPACE
2-EXP = AEXPSPACE

51 / 73

Branching Plans Alternation

EXP-hardness of Conditional Planning

Proof idea: Extend the PSPACE-hardness proof for classical planning with
alternation (computation of an ATM is an AND/OR tree.)

I ∃ states: one deterministic action is chosen to the plan, from several
possible ones.

I ∀ states: one nondeterministic action simulates all possible transitions.
I In branching plans, actions for ∀ states are followed by observing the new

configuration and continuing the simulation accordingly.

52 / 73

Branching Plans Alternation

Simulation of Deterministic Turing Machines

PSPACE-hardness proof of classical planning

∃

∃

∃

acc

one deterministic action

one deterministic action

one deterministic action

53 / 73

Branching Plans Alternation

Simulation of Nondeterministic Turing Machines

PSPACE=NPSPACE-hardness proof of classical planning

∃

∃ ∃

∃ ∃ ∃ ∃

acc rej rej acc acc acc rej acc

two deterministic actions

two deterministic actions two deterministic actions

54 / 73

Branching Plans Alternation

Simulation of Alternating Turing Machines

EXP=APSPACE-hardness proof with full observability

∀

∃ ∃

∃ ∀ ∀ ∃

acc rej rej acc acc acc rej acc

one nondeterministic action

two deterministic actions two deterministic actions

55 / 73

Branching Plans Alternation

Correspondence of ATM executions and plans

An accepting computation tree is mapped to a plan:
1. ∃-configuration to action
2. ∀-configuration to observation + action

∀

∃ ∃

∃ ∀ ∀ ∃

acc rej rej acc acc acc rej acc

ND action

obs1 obs2

D action D action

D action D action

56 / 73

Branching Plans Alternation

Partial Observability vs. Branching
Extending Classical Planning with Branching and Observability Limitations [Rin04]

deterministic

nondeterministic (full obs.) nondeterministic (no obs.)

nondeterministic (partial obs.)

branching belief states

branchingbelief states

PSPACE

EXP EXPSPACE

2-EXP

alternation exponential tape

alternationexponential tape

Alternation ∼ Branching plans

Exponential tape ∼ Belief states

57 / 73

Branching Plans Polynomial Hierarchy

Polynomial Hierarchy
Polynomial Hierarchy = PSPACE problems with limited alternation

Example

Σp
2 = trees with polynomial depth and ∃ nodes followed by ∀ nodes

∃

∃ ∃

∀ ∀ ∀ ∀

∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀

58 / 73

Branching Plans Polynomial Hierarchy

The Polynomial Hierarchy

P

NP = Σp
1 co-NP = Πp

1

∆p
2

Σp
2 Πp

2

∆p
3

Σp
3 Πp

3

PH =
⋃

i≥1(Σp
i ∪Πp

i)

PSPACE

∃ ∀

∃∀ ∀∃

∃∀∃ ∀∃∀

all finite ∃∀∃ · · · ∀∃

unbounded ∃∀∃∀ · · ·

59 / 73

Branching Plans Polynomial Hierarchy

Planning Problems in the Polynomial Hierarchy

Conditional Planning with Poly-Size Plans

There is (∃) a poly-size plan such that
for all contingencies (∀) there is an execution leading to goals.

Most naturally expressed as a quantified Boolean formula [Sto76] with prefix
∃∀∃ [Rin99], but as the problem is in Σp

2, it is possible to express it as a QBF
with prefix ∃∀ [Rin07a].

Conditional Planning with Short Executions

There is (∃) an action such that for all (∀) contingencies
there is (∃) an action such that for all (∀) contingencies
· · · a goal state is reached.

Conditional planning with n consecutive actions expressible as a QBF prefix
n alternations︷ ︸︸ ︷
∃∀∃ · · · ∃ [Tur02]. This covers all of the Polynomial Hierarchy.

60 / 73

Branching Plans Polynomial Hierarchy

Uncertainty in Scheduling

Most of the scheduling problems encountered in practice are NP-complete

Harder scheduling problems typically involve uncertainty:

I expected makespan for stochastic task durations #P-hard [Hag88]
I scheduling with uncertain resource availability [Rin13]

I general case PSPACE-complete
I Πp

2-complete when all uncertainty resolved in the beginning
I Σp

2-complete when contingent schedules are poly-size

61 / 73

Unsolvability

Limits of Planning: Unsolvability

I Planning is not only hard, but sometimes impossible.
I Main forms of unsolvable planning problems:

I unbounded numeric state variables (extension of classical planning)
I continuous change (planning with hybrid systems)
I optimal probabilistic planning with partial observability (optimal POMDPs)

I Impossibility associated with infinite state spaces and states of
unbounded size

62 / 73

Unsolvability Numeric Variables

Unsolvability from (Unbounded) Numbers

Integer problems are unsolvable:
I Halting problem of general Turing machines encodable in classical

planning + integers
I unbounded working tape (∼ two stacks of a pushdown automaton)

encodable with:
I two integer variables, +1, test-even, multiply-by-2, divide-by-2
I two integer variables, +1, test-even, shift-left, shift-right
I other possibilities

I Practical ways out:
I use bounded integers only (finite-state systems)
I consider bounded length plans only (⇒ incompleteness)

63 / 73

Unsolvability POMDP

Probabilistic Plans and Partial Observability

I Need to remember unbounded past history
I Finding optimal POMDP policies unsolvable [MHC03]
I Proof by reduction from probabilistic automata [Paz71]
I Practical ways out:

I finite-memory policies (⇒ incompleteness) [MKKC99, LLS+99, CCD16]
I practical POMDP algorithms don’t prove optimality

64 / 73

Unsolvability Continuous and Hybrid Systems

Hybrid Systems: Solvability vs. Unsolvability

I reachability (planning) for hybrid systems undecidable
[HKPV95, CL00, PC07]

I many problems with only 2 continuous variables undecidable!!
I decidable cases for reachability: rectangular automata [HKPV95], 2-d

PCD [AMP95], planar multi-polynomial systems [ČV96]
I semi-decision procedures: no termination when plans don’t exist.

65 / 73

Unsolvability Continuous and Hybrid Systems

Hybrid Systems: Solvability vs. Unsolvability
Approaches to Tackle the Unsolvability

I Limit to short plans (⇒ incompleteness)
I non-linear polynomials highly complex [BD07], with functions like sine

unsolvable
I some solvers give approximation guarantees [GKC13]
I approximation problematic due to lack of stability: small errors accumulate

and cause plans to fail
I A main challenge is the development of more useful solvers
I General-purpose methods in general do not work well

66 / 73

Conclusion

Complexity Classes vs. Types of Planning
undecidable

2-EXP

EXPSPACE

NEXP

EXP

PSPACE

PH

NP

P

NLOGSPACE

optimal POMDPs [MHC03]

non-deterministic partially observable [Rin04]

unobservable (“conformant”) [HJ00, Rin04]

probabilistic [Lit97];succinct MDPs [MGLA00]

classical [Byl94]

branching plans with short executions [Tur02]

poly-length classical

flat MDPs [PT87]

s-t reachability

67 / 73

References

References I
[AMP95] Eugene Asarin, Oded Maler, and Amir Pnueli.

Reachability analysis of dynamical systems having piecewise-constant derivatives.
Theoretical Computer Science, 138(1):35–65, 1995.

[BCL+94] Jerry R. Burch, Edmund M. Clarke, David E. Long, Kenneth L. MacMillan, and David L. Dill.
Symbolic model checking for sequential circuit verification.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 13(4):401–424, 1994.

[BCM+92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic model checking: 1020 states and beyond.
Information and Computation, 98(2):142–170, 1992.

[BD07] Christopher W. Brown, , and James H. Davenport.
The complexity of quantifier elimination and cylindrical algebraic decomposition.
In Proceedings of the 2007 International Symposium on Symbolic and Algebraic Computation, pages 54–60, 2007.

[BM99] Alberto Bemporad and Manfred Morari.
Control of systems integrating logic, dynamics, and constraints.
Automatica, 35(3):407–427, 1999.

[Byl94] Tom Bylander.
The computational complexity of propositional STRIPS planning.
Artificial Intelligence, 69(1-2):165–204, 1994.

[CBM90] Olivier Coudert, Christian Berthet, and Jean Christophe Madre.
Verification of synchronous sequential machines based on symbolic execution.
In Joseph Sifakis, editor, Automatic Verification Methods for Finite State Systems, International Workshop, Grenoble, France, June 12-14,
1989, Proceedings, volume 407 of Lecture Notes in Computer Science, pages 365–373. Springer-Verlag, 1990.

[CCD16] Krishnendu Chatterjee, Martin Chmelik, and Jessica Davies.
A symbolic SAT-based algorithm for almost-sure reachability with small strategies in POMDPs.
In Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI-16), 2016.

[CKS81] A. Chandra, D. Kozen, and L. Stockmeyer.
Alternation.
Journal of the ACM, 28(1):114–133, 1981.

68 / 73

References

References II
[CL00] Franck Cassez and Kim Larsen.

The impressive power of stopwatches.
In Catuscia Palamidessi, editor, CONCUR 2000 - Concurrency Theory, volume 1877 of Lecture Notes in Computer Science, pages 138–152.
Springer-Verlag, 2000.

[Coo71] Stephen A. Cook.
The complexity of theorem-proving procedures.
In Proceedings of the Third Annual ACM Symposium on Theory of Computing, pages 151–158, 1971.

[ČV96] Kārlis Čerāns and Juris Vı̄ksna.
Deciding reachability for planar multi-polynomial systems.
In Rajeev Alur, Thomas A. Henzinger, and Eduardo D. Sontag, editors, Hybrid Systems III, volume 1066 of Lecture Notes in Computer
Science, pages 389–400. Springer-Verlag, 1996.

[ENS91] Kutluhan Erol, Dana S. Nau, and V. S. Subrahmanian.
Complexity, decidability and undecidability results for domain-independent planning: A detailed analysis.
Technical Report CS-TR-2797, University of Maryland, Computer Science Department, 1991.

[Gef00] Héctor Geffner.
Functional STRIPS: a more flexible language for planning and problem solving.
In Logic-based Artificial Intelligence, pages 187–209. Springer-Verlag, 2000.

[GKC13] Sicun Gao, Soonho Kong, and Edmund M. Clarke.
dReal: An SMT solver for nonlinear theories over the reals.
In Maria Paola Bonacina, editor, Automated Deduction - CADE-24, volume 7898 of Lecture Notes in Computer Science, pages 208–214.
Springer-Verlag, 2013.

[GPM89] Carlos E. Garcìa, David M. Prett, and Manfred Morari.
Model predictive control: Theory and practice – a survey.
Automatica, 25(3):335–348, 1989.

[GW83] Hana Galperin and Avi Wigderson.
Succinct representations of graphs.
Information and Control, 56:183–198, 1983.
(See [Loz88] for a correction.).

[Hag88] J.N. Hagstrom.
Computational complexity of PERT problems.
Networks, 18(2):139–147, 1988.

69 / 73

References

References III
[HJ00] Patrik Haslum and Peter Jonsson.

Some results on the complexity of planning with incomplete information.
In Recent Advances in AI Planning. 5th European Conference on Planning, ECP’99, Durham, UK, September 8-10, 1999. Proceedings,
number 1809 in Lecture Notes in Artificial Intelligence, pages 308–318. Springer-Verlag, 2000.

[HKPV95] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya.
What’s decidable about hybrid automata?
In Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, pages 373–382, 1995.

[Kar72] R.M. Karp.
Reducibility among combinatorial problems.
In R.E. Miller and J. W. Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum Press, 1972.

[KS92] Henry Kautz and Bart Selman.
Planning as satisfiability.
In Proceedings of the 10th European Conference on Artificial Intelligence, pages 359–363. John Wiley & Sons, 1992.

[LB90] Antonio Lozano and José L. Balcázar.
The complexity of graph problems for succinctly represented graphs.
In Manfred Nagl, editor, Graph-Theoretic Concepts in Computer Science, 15th International Workshop, WG’89, number 411 in Lecture Notes
in Computer Science, pages 277–286. Springer-Verlag, 1990.

[Lit97] Michael L. Littman.
Probabilistic propositional planning: Representations and complexity.
In Proceedings of the 14th National Conference on Artificial Intelligence (AAAI-97) and 9th Innovative Applications of Artificial Intelligence
Conference (IAAI-97), pages 748–754. AAAI Press, 1997.

[LLS+99] Christopher Lusena, Tong Li, Shelia Sittinger, Chris Wells, and Judy Goldsmith.
My brain is full: When more memory helps.
In Uncertainty in Artificial Intelligence, Proceedings of the Fifteenth Conference (UAI-99), pages 374–381. Morgan Kaufmann Publishers, 1999.

[Loz88] Antonio Lozano.
NP-hardness of succinct representations of graphs.
Bulletin of the European Association for Theoretical Computer Science, 35:158–163, June 1988.

[MGLA00] Martin Mundhenk, Judy Goldsmith, Christopher Lusena, and Eric Allender.
Complexity of finite-horizon Markov decision process problems.
Journal of the ACM, 47(4):681–720, 2000.

70 / 73

References

References IV
[MHC03] Omid Madani, Steve Hanks, and Anne Condon.

On the undecidability of probabilistic planning and related stochastic optimization problems.
Artificial Intelligence, 147(1–2):5–34, 2003.

[MKKC99] Nicolas Meuleau, Kee-Eung Kim, Leslie Pack Kaelbling, and Anthony R. Cassandra.
Solving POMDPs by searching the space of finite policies.
In Uncertainty in Artificial Intelligence, Proceedings of the Fifteenth Conference (UAI-99), pages 417–426. Morgan Kaufmann Publishers, 1999.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: engineering an efficient SAT solver.
In Proceedings of the 38th ACM/IEEE Design Automation Conference (DAC’01), pages 530–535. ACM Press, 2001.

[MSS99] João P. Marques-Silva and Karem A. Sakallah.
GRASP: a search algorithm for propositional satisfiability.
IEEE Transactions on Computers, 48(5):506–521, 1999.

[Pap94] Christos H. Papadimitriou.
Computational Complexity.
Addison-Wesley Publishing Company, 1994.

[Paz71] Azaria Paz.
Introduction to Probabilistic Automata.
Academic Press, 1971.

[PC07] André Platzer and Edmund M. Clarke.
The image computation problem in hybrid systems model checking.
In Alberto Bemporad, Antonio Bicchi, and Giorgio Buttazzo, editors, Hybrid Systems: Computation and Control, volume 4416 of Lecture Notes
in Computer Science, pages 473–486. Springer-Verlag, 2007.

[PT87] Christos H. Papadimitriou and John N. Tsitsiklis.
The complexity of Markov decision processes.
Mathematics of Operations Research, 12(3), 1987.

[Rin99] Jussi Rintanen.
Constructing conditional plans by a theorem-prover.
Journal of Artificial Intelligence Research, 10:323–352, 1999.

71 / 73

References

References V
[Rin01] Jussi Rintanen.

Partial implicit unfolding in the Davis-Putnam procedure for quantified Boolean formulae.
In R. Nieuwenhuis and A. Voronkov, editors, Logic for Programming, Artificial Intelligence and Reasoning. 8th International Conference, LPAR
2001, Havana, Cuba, December 3–7, 2001. Proceedings, number 2250 in Lecture Notes in Artificial Intelligence, pages 362–376.
Springer-Verlag, 2001.

[Rin04] Jussi Rintanen.
Complexity of planning with partial observability.
In ICAPS 2004. Proceedings of the Fourteenth International Conference on Automated Planning and Scheduling, pages 345–354. AAAI
Press, 2004.

[Rin06] Jussi Rintanen.
Unified definition of heuristics for classical planning.
In ECAI 2006. Proceedings of the 17th European Conference on Artificial Intelligence, pages 600–604. IOS Press, 2006.

[Rin07a] Jussi Rintanen.
Asymptotically optimal encodings of conformant planning in QBF.
In Proceedings of the 22nd AAAI Conference on Artificial Intelligence (AAAI-07), pages 1045–1050. AAAI Press, 2007.

[Rin07b] Jussi Rintanen.
Complexity of concurrent temporal planning.
In ICAPS 2007. Proceedings of the Seventeenth International Conference on Automated Planning and Scheduling, pages 280–287. AAAI
Press, 2007.

[Rin08] Jussi Rintanen.
Regression for classical and nondeterministic planning.
In ECAI 2008. Proceedings of the 18th European Conference on Artificial Intelligence, pages 568–571. IOS Press, 2008.

[Rin09] Jussi Rintanen.
Planning and SAT.
In Handbook of Satisfiability, number 185 in Frontiers in Artificial Intelligence and Applications, pages 483–504. IOS Press, 2009.

[Rin13] Jussi Rintanen.
Scheduling with contingent resources and tasks.
In Proceedings of the International Conference on Automated Planning and Scheduling, ICAPS 2013, pages 189–196. AAAI Press, 2013.

[Sto76] L. J. Stockmeyer.
The polynomial-time hierarchy.
Theoretical Computer Science, 3(1):1–22, 1976.

72 / 73

References

References VI

[Tur02] Hudson Turner.
Polynomial-length planning spans the polynomial hierarchy.
In Logics in Artificial Intelligence, European Conference, JELIA 2002, number 2424 in Lecture Notes in Computer Science, pages 111–124.
Springer-Verlag, 2002.

[YMH98] Hui Ye, Anthony N. Michel, and Ling Hou.
Stability theory for hybrid dynamical systems.
IEEE Transactions on Automatic Control, 43(4):461–474, 1998.

73 / 73

