## Computational Complexity of Automated Planning and

## Scheduling

## ntroduction

Applicability to Robotics
Structural Complexity Theory Transformations
Turing Machines
Complexity Classes
Classical Planning
PSPACE-hardness
Idea

## Algorithm

Succinctness
Outside PSPACE
Branching Plans
Alternating Computation
Unsolvability
Numeric State Variables
Optimal POMDP Policies
Continuous and Hybrid Systems
References <br> \title{

## Computational Complexity in Automated Planning <br> \title{ \section*{Computational Complexity in Automated Planning and Scheduling} 

 and Scheduling}}

Jussi Rintanen<br>Department of Computer Science

Aalto University
Helsinki, Finland

ICAPS 2016, London, U.K.

## This Tutorial

- Why is Complexity (very) important in Planning?
- Brief overview of basic concepts
- NP vs. PSPACE
- Succinctness vs. Complexity
- Planning and Scheduling outside PSPACE
- types of search trees vs. plans
- OR-trees for sequential plans
- AND-OR-trees for branching plans
- Solvability vs. Unsolvability
- Numeric state variables
- Continuous change
- Belief states and Partial Observability
- How much resources (CPU time, memory) are needed?
- Most problems exponential. Question: How exponential?
- Connections between problems: (polynomial time) transformations $\Rightarrow$ complexity classes
$\Rightarrow$ classification of problems by classes
Much of standard complexity theory [Pap94] relevant to planning


## Why?

Complexity is one of the important properties of an algorithm.

- Correctness: Are the solutions correct?
- Completeness: Is a solution found whenever one exists?
- Complexity: Is resource use of the algorithm reasonable?

If complexity is unknown, it is difficult to do anything about it.
$\Rightarrow$ Analyze. Then look at ways attacking it.

## Big O in Analysis of Algorithms

Standard tool in analyzing algorithms is asymptotic resource consumption in the worst-case.

## Big O - Asymptotic growth rates

function $f(n)$ is in $\mathcal{O}(g(n))$ iff

$$
f(n) \leq c \cdot g(n)
$$

for all $n \geq 0$ and some $c$.

## For input of size $n$ :

!
logarithmic resource consumption
polynomial resource consumption exponential resource consumption
$\mathcal{O}(\log n)$
doubly exponential resource consumption
$\mathcal{O}\left(2^{n^{k}}\right)$
$\mathcal{O}\left(2^{2^{n^{k}}}\right)$

## What Is It Good For? (In Planning)

## Research on Algorithms

Is an algorithm as good as it can be?

- Does it use more resources than it should? Why?


## Research on Modeling Languages

What can be expressed in a modeling language?

- Comparisons between modeling languages
- Mappings between languages (time, size)


## Research on Applications

How should an application problem be solved?

- Match or a mismatch with a modeling language?
- Match or a mismatch with an algorithm?


## Coarseness of Big O vs. Complexity Classes

|  | best algorithms |  |
| :--- | :--- | :--- |
| complexity class | memory big O | time big O |
| co-NP | $\mathcal{O}(p(n))$ | $\mathcal{O}\left(2^{n}\right)$ |
| NP | $\mathcal{O}(p(n))$ | $\mathcal{O}\left(2^{n}\right)$ |
| PSPACE | $\mathcal{O}(p(n))$ | $\mathcal{O}\left(2^{n}\right)$ |

- Big practical differences between (co-)NP and PSPACE!
- Big O only applies to algorithms, not directly to problems.
$\Longrightarrow$ Structural Complexity Theory: Theory of Complexity Classes


## Applicability to Reactive Control (Robotics)

- Literature mostly about complete plans, covering all future situations
- Selecting only the next action sometimes believed to reduce complexity (as a part of the sense-plan-act loop in closed-loop control)
- Most results in the literature apply to both
- on-line planning (only first action chosen, repeatedly)
- off-line planning (full plan constructed before execution)
- Existence of a complete plan (satisfying some criteria) equivalent to the possibility of selecting the first/next action (satisfying same criteria). $\Rightarrow$ No complexity reduction by doing things on-line


## Polynomial-Time Transformations

## Example

Let $G=\langle N, E\rangle$ be a graph. Then $G$ is in 3-COLORABLE if and only if the conjunction of the following is in SAT.

$$
\begin{align*}
& \quad\left(R_{i} \vee G_{i} \vee B_{i}\right) \text { for all } i \in N  \tag{1}\\
& \neg\left(R_{i} \wedge R_{j}\right) \text { for all }\{i, j\} \in E  \tag{2}\\
& \neg\left(G_{i} \wedge G_{j}\right) \text { for all }\{i, j\} \in E  \tag{3}\\
& \neg\left(B_{i} \wedge B_{j}\right) \text { for all }\{i, j\} \in E \tag{4}
\end{align*}
$$

Therefore 3-COLORABLE $\leq_{p}$ SAT

## Polynomial-Time Transformations

## Polynomial-time transformations (Karp reductions)

A decision problem $X$ is transformed in polynomial time to decision problem $Y$ (written $X \leq_{p} Y$ ) if and only if there is function $f$ such that

1. $f$ is computable in polynomial time, and
2. for all $s, s \in X$ if and only if $f(s) \in Y$.

## Significance:

1. If $X \leq_{p} Y$ and $Y$ has an algorithm, then so has $X$.
2. If $X \leq_{p} Y$ and $Y$ is easy to solve (tractable), then so is $X$.
3. If $X \leq_{p} Y$ and $X$ is difficult to solve (intractable), then so is $Y$.

## Insights from PTIME Transformations (1970ies) <br> [Coo71, Kar72]



## Resource Requirements of Computation

|  | memory |
| :---: | :---: |
|  | 01101101101100101011 |
|  | 10110110101101101100 |
|  | 01101101101100110011 |
|  | 01001010110110101101 |
|  | 00110011001010110110 |
| Computation: | 10110110101100110011 |
| - sequence of states of the | 01001010101101101100 |
| computation device, indicating the | 00110011110110101101 |
|  | 00110011001010110110 |
|  | 01101100110011001010 |
| - changes from state to state follow the | 01101101110011110011 |
| "program" of the device | 01001010110110101101 |
|  | 00110011001010110110 |
|  | 01101100110011001010 |
|  | 10110110101100011010 |
|  | 00110011110110001100 |
|  | 01101100001110011010 |

## Turing machines

## Definition

A Turing machine $\left\langle\Sigma, Q, \delta, q_{0}, g\right\rangle$ consists of

1. an alphabet $\Sigma$ (a set of symbols),
2. a set $Q$ of internal states,
3. a transition function $\delta$ that maps $\langle q, s\rangle$ to a tuple $\left\langle s^{\prime}, q^{\prime}, m\right\rangle$ where $q, q^{\prime} \in Q$, $s \in \Sigma \cup\{\mid, \square\}, s^{\prime} \in \Sigma \cup\{\mid\}$ and $m \in\{L, N, R\}$.
4. an initial state $q_{0} \in Q$, and
5. a labeling $g: Q \rightarrow\{$ accept, reject, $\exists\}$ of states.

## Turing Machines

Turing machine configuration (state, R/W head, tape contents):
$q_{1}$

| $\downarrow$ |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A | B | B | A | B | $\square$ | $\square$ | $\square$ | $\square$ | $\square$ | $\cdots$ |

Transitions of the Turing machine:

| old state | read | write | new state | move |
| :---: | :---: | :---: | :---: | :---: |
| $q_{1}$ | A | A | $q_{3}$ | L |
| $q_{1}$ | B | A | $q_{1}$ | N |
| $q_{1}$ | $\square$ | A | $q_{1}$ | N |
| $q_{1}$ | $\mid$ | I | $q_{1}$ | R |
| $q_{2}$ | A | B | $q_{2}$ | R |
| $q_{2}$ | B | A | $q_{2}$ | R |
| $q_{2}$ | $\square$ | B | $q_{1}$ | N |
| $q_{2}$ | $\mid$ | I | $q_{1}$ | R |
| $q_{3}$ | A | B | $q_{1}$ | L |
| $q_{3}$ | B | B | $q_{3}$ | R |
| $q_{3}$ | $\square$ | B | $q_{1}$ | N |
| $q_{3}$ | I | I | $q_{1}$ | R |

Basics Turing Machines

## Nondeterministic Computation: Graph Coloring

Nodes 1, 2 and 3 are made Red, Green or Blue.


## Nondeterministic Computation

- Resource-limited nondeterministic Turing machines (NDTM) represent search with bounds on memory use and size of search tree.
- Non-determinism = choice of branch of a computation/search tree
- Memory consumption = max. used tape in any configuration
- Time consumption = max. path length in the tree


## The Complexity Class NP: Motivation

It was observed in early 1970ies [Coo71] that there are many important problems that

- do not seem to have polynomial-time algorithms,
- can be easily solved with non-deterministic TMs, and
- can be transformed to each other in poly-time.


## Definition

A decision problem $X$ gives a yes or no answer for a given input $x$, often written as a set membership question $x \in X$ ?

## Definition

The complexity class NP consists of decision problems that are solvable by a non-deterministic Turing machine in a polynomial number of steps.

## NP-Hardness and NP-Completeness

## Definition (NP-hardness)

A decision problem $Y$ is NP-hard iff $X \leq_{p} Y$ for every $X$ in NP.

## Definition (NP-completeness)

A decision problem $Y$ is NP-complete iff $Y$ is NP-hard and $Y$ is in NP.

## NP-Completeness of SAT

## Theorem

SAT (the satisfiability problem of the propositional logic) is NP-complete.

## Proof.

Membership in NP: guess a satisfying assignment.
NP-hardness: Proof similar to Planning as SAT [KS92]. Express non-deterministic TM executions of given length: change between two consecutive configurations easily expressible as a Boolean formula.

> Basics More Classes

## Definitions of Complexity Classes

Complexity classes express worst-case time and memory requirements.

$$
\begin{aligned}
\mathrm{P} & =\bigcup_{k \geq 0} \operatorname{DTIME}\left(n^{k}\right) \\
\operatorname{EXP} & =\bigcup_{k \geq 0} \operatorname{DTIME}\left(2^{n^{k}}\right) \\
2-\operatorname{EXP} & =\bigcup_{k \geq 0} \operatorname{DTIME}\left(2^{2^{n^{k}}}\right) \\
\mathrm{NP} & =\bigcup_{k \geq 0} \operatorname{NTIME}\left(n^{k}\right) \\
\text { NEXP } & =\bigcup_{k \geq 0} \operatorname{NTIME}\left(2^{n^{k}}\right) \\
2-\mathrm{NEXP} & =\bigcup_{k \geq 0} \operatorname{NTIME}\left(2^{2^{n^{k}}}\right) \\
\text { PSPACE } & =\bigcup_{k \geq 0} \operatorname{DSPACE}\left(n^{k}\right) \\
\text { EXPSPACE } & =\bigcup_{k \geq 0} \operatorname{DSPACE}\left(2^{n^{k}}\right) \\
\text { NLOGSPACE } & =\operatorname{NSPACE}(\log n) \\
\text { NPSPACE } & =\bigcup_{k \geq 0} \operatorname{NSPACE}\left(n^{k}\right) \\
\text { NEXPSPACE } & =\bigcup_{k \geq 0} \operatorname{NSPACE}\left(2^{n^{k}}\right)
\end{aligned}
$$

## More Complexity Classes

## Definition

DTIME $(f)$ is the class of decision problems solved by a deterministic Turing machine in $\mathcal{O}(f(n))$ time when $n$ is the input string length.

## Definition

$\operatorname{NTIME}(f)$ is defined similarly for nondeterministic Turing machines.

## Definition

$\operatorname{DSPACE}(f)$ is the class of decision problems solved by a deterministic Turing machine in $\mathcal{O}(f(n))$ space when $n$ is the input string length.

## Overview of Complexity Classes

$\uparrow$
2-NEXP
$\stackrel{\uparrow}{\text { ® }}$
$2-\underset{\uparrow}{2-E X P}$
EXPSPACE
NEXP
$\stackrel{\uparrow}{\text { EXP }}$
EXP provably intractable
PSPACE
$\stackrel{\uparrow}{\mathrm{P}}{ }_{\mathrm{H}}$
PH
NP

P
NLOGSPACE
tractable

## Classical Planning

## Properties:

- untimed (asynchronous): one action a time, change instantaneous
- one known initial state
- actions are deterministic, environment otherwise static
- objective is to reach a goal state (finite executions)

This is the state space search problem also in

- problem-solving (search) in AI
- reachability analysis in Computer-Aided Verification
- model-checking (non-modal safety properties) in Computer-Aided Verification
- other areas


## Simulation of PSPACE Turing machines

Turing machine with $\Sigma=\{u, v, w\}$, input string of length $n=4$, space bound $p(n)=n^{2}=16$, internal states $Q=\left\{q_{1}, q_{2}, q_{3}\right\}$

State variables in the corresponding planning problem:

| state $q_{1}:$ | $q_{1}$ |  |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| state $q_{2}:$ | $q_{2}$ |  |  |  |  |  |  |
| state $q_{3}:$ | $q_{3}$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| tape cell: | 0 | 1 | 2 | 3 | $\cdots$ | 15 | 16 |
| R/W head: | $h_{0}$ | $h_{1}$ | $h_{2}$ | $h_{3}$ | $\cdots$ | $h_{15}$ | $h_{16}$ |
| Symbol $u:$ |  | $u_{1}$ | $u_{2}$ | $u_{3}$ | $\cdots$ | $u_{15}$ | $u_{16}$ |
| symbol $v:$ |  | $v_{1}$ | $v_{2}$ | $v_{3}$ | $\cdots$ | $v_{15}$ | $v_{16}$ |
| symbol $w:$ | $w_{1}$ | $w_{2}$ | $w_{3}$ | $\cdots$ | $w_{15}$ | $w_{16}$ |  |
| symbol $\square:$ | $\square_{1}$ | $\square_{2}$ | $\square_{3}$ | $\cdots$ | $\square_{15}$ | $\square_{16}$ |  |

## Simulation of PSPACE Turing machines

Match polynomially space-bounded Turing machines $\sim$ classical planning:

1. Turing machine configurations $\sim$ states
2. Turing machine transitions $\sim$ actions
3. initial configuration $\sim$ initial state
4. accepting configurations $\sim$ goal states

For simulation of PSPACE TMs a number of state variables that is polynomial in input string length suffices.

## Simulation of PSPACE Turing machines

Classical Planning PSPACE-hardnes

Example
True state variables marked with color:


Preconditions of $a_{u, q_{1}, 1}$ are $u_{1}, q_{1}, h_{1}$.
Effects of $a_{u, q_{1}, 1}$ are

- $\neg q_{1}, q_{2}$ (state changes from $q_{1}$ to $q_{2}$ )
- $\neg h_{1}, h_{2}$ (head location changes from 1 to 2 )
- $\neg u_{1}, v_{1}$ (symbol $u$ replaced by $v$ at location 1 )
obtained directly from the TMs transition function.


## Classical Planning is in PSPACE

- The PSPACE-hardness result provides a lower bound on the complexity of deterministic planning.
- We next give an upper bound on the complexity by showing that the problem belongs to PSPACE.
- Hence the problem is PSPACE-complete, determining complexity exactly.
- It is not known whether NP $\neq P S P A C E$ or even $P \neq P S P A C E$, but the result is still useful because for all practical purposes we can assume that NP $\neq$ PSPACE.
- For example, we may conclude that there is, most likely, no polynomial-time transformation from planning to SAT.


## Classical Planning is in PSPACE

Proof idea

Recursive algorithm for testing $m$-step reachability between two states with $\log m$ memory consumption.

Classical Planning NP vs. PSPACE

## NP vs. PSPACE for Planning and Scheduling

- Many types of NP-complete problems solved effectively: guess a solution (with good heuristics!)
- Same far harder with PSPACE-problems:
- polynomial number of guesses not enough
- either exponential number of guesses, or
- search tree is an AND-OR tree.

Why real-world planning and scheduling often feasible?

- Schedules always and sequential plans often polynomial size $\Rightarrow$ problems are in NP!
- effective heuristics available
- real-world P\&S
- some plan/schedule (with unlimited resources) trivial to find
- solvable with scalable constraint-based methods (MILP, CP, ...)
- good schedules can be found for very large problem instances
- IPC benchmark sets (classical/temporal planning without optimization)


## Succinctness

There is no one unique classical planning problem. Differences: succinctness/compactness of input to the planning algorithm.

1. flat/enumerative representation (as a graph: nodes, arcs)
2. ground actions (can represent an exponential size graph)
3. schematic actions (can represent a doubly exponential size graph)

## Planning Problems as Sets of (Ground) Actions

state variables: RonG, RonB, GonR, GonB, BonR, BonG, Rontable, Gontable, Bontable, Rclr, Gclr, Bclr

```
actions:
moveRfromGtoB \(=(\{\) RonG,Rclr,Bclr \(\},\{\neg\) RonG, RonB,Gclr, \(\neg\) Bclr \(\})\)
moveRfromBtoG \(=(\{\) RonB,Rclr,Gclr \(\},\{\neg\) RonB, RonG, Bclr, \(\neg\) Gclr \(\})\)
moveGfromRtoB \(=(\{\) GonR,Gclr,Bclr \(\},\{\neg\) GonR, GonB,Rclr, \(\neg\) Bclr \(\})\)
```

moveGfromBtoR $=(\{$ GonB,Gclr,Rclr $\},\{\neg$ GonB, GonR,Bclr, $\neg$ Rclr $\})$

This representation has size $\mathcal{O}\left(n^{3}\right)$ for $n$ of blocks, representing 1, 3, 13, 73, $501,4051,37633,394353,4596553, \ldots$ states for $1,2,4,5, \ldots$ blocks, respectively.

Planning Problems given as a Graph
Blocks world with three blocks


Succinctness

## Planning Problems as Sets of Schematic Actions

variable domains: $\mathrm{BLOCKS}=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots\}$
state variables: on $(\mathrm{x}, \mathrm{y})$, ontable $(\mathrm{x}), \operatorname{clr}(\mathrm{x})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{BLOCKS}$ actions:
$\operatorname{move}(b, s, t)=(\{t \neq \mathrm{b} \neq \mathrm{s}, \operatorname{on}(\mathrm{b}, \mathrm{s}), \operatorname{clr}(\mathrm{b}), \operatorname{clr}(\mathrm{t})\},\{\neg \mathrm{on}(\mathrm{b}, \mathrm{s})$, on(b,t), $\operatorname{clr}(\mathrm{s}), \rightarrow \operatorname{clr}(\mathrm{t})\})$
movefromtable $(b, t)=\{\{b \neq t$, ontable $(b), \operatorname{clr}(b), \operatorname{clr}(t)\},\{\neg$ ontable $(b), \operatorname{on}(b, t)\})$
movetotable $(\mathrm{b}, \mathrm{s})=(\{\mathrm{b} \neq \mathrm{s}$, on $(\mathrm{b}, \mathrm{s}), \operatorname{clr}(\mathrm{b})\},\{\neg$ on $(\mathrm{b}, \mathrm{s})$, ontable(b) $)\}$
where $\{b, s, t\} \subseteq$ BLOCKS
This representation has size $\mathcal{O}(n)$ for $n$ blocks.
(Ground actions exponential in size of schematic actions only when arity of predicates grows.)

## Succinctness

## Levels of Succinctness for Classical Planning

## Question: Succinctness Reduces Complexity?

Some problems are hard to solve, due to their large size.
If problem instance can be represented succinctly (compact, factored representation), will it have regularities that allow solving it more efficiently?

Answer to a high number of graph problems is negative [GW83, Loz88, LB90]: cost of computation in real-world terms is not reduced (in worst case)

| representation | complexity |
| :--- | :--- |
| graph (nodes, arcs) | NLOGSPACE-complete |
| ground actions | PSPACE-complete [GW83, Loz88, LB90, By194] |
| schematic actions | EXPSPACE-complete, undecidable [ENS91] |

In the worst case, for graphs of size $2^{2^{n}}$ these respectively correspond to

1. $\mathcal{O}(n)$ time in size $\mathcal{O}\left(2^{2^{n}}\right)$ of a graph
2. $\mathcal{O}\left(2^{n}\right)$ time in size $\mathcal{O}\left(2^{n}\right)$ ground action set
3. $\mathcal{O}\left(2^{2^{n}}\right)$ time in size $\mathcal{O}(n)$ schematic action set

This is same $\mathcal{O}\left(2^{2^{n}}\right)$ in the size of the graph, in all three cases!!

Classical planning can be expressed in terms of

- STRIPS
- preconditions: conjunctions of $x=0, x=1$
- effects: assignments $\mathrm{x}:=0, \mathrm{x}:=1$
- PDDL/ADL: STRIPS + Boolean connectives $\wedge, ~ \vee, \neg$ and IF-THEN
- arbitrary propositional formulas (cf. BDD-based model-checking [BCL ${ }^{+94] \text {, Planning as SAT [KS92, Rin09]) }}$

Can the same planning problems be expressed in all formalisms?

## Succinctness

## Complexity vs. Expressivity

## Complexity vs. Expressivity

Different answers, depending what is meant:

1. In all cases, planning is PSPACE-complete, so decision problems "is there a plan" intertranslatable. ${ }^{1}$
2. Translations so that the transition graph remains the same:

- Translating PDDL/ADL into STRIPS exponential size/time.
- Translating Boolean formulas into PDDL exponential size/time.

Lessons:

- Even if complexity is same, a modeling language can be exponentially more compact.
- Simpler languages do not (necessarily) offer performance benefits, and may make compact modeling impossible.

[^0]
## Extensions to Classical Planning in PSPACE

- Many extensions within PSPACE possible:
-bounded integers, bounded rationals, floats, enums
- any other bounded-size data
- more complex effects
- assignments $\mathrm{a}[\mathrm{x}]:=\mathrm{b}[\mathrm{y}]$ [Gef00]
- sequential composition (e1; e2) [Rin08]
- Practical works often unnecessarily limit to STRIPS, even when more general language straigthforward to handle [Rin06, Rin08]
- Extensions that make classical planning unsolvable discussed later...


## Outside NP and PSPACE



## Classical Planning: Theory vs. Practice

How do actual algorithms perform w.r.t. theoretical requirements?

All algorithms use exponential time. Memory consumption differs:

|  | memory consumption |  |
| :--- | :--- | :--- |
| algorithm | poly-long plans | exp-long plans |
| A* $^{*}$, greedy best-first | exp | exp |
| IDA $^{*}$ | poly | exp |
| BDDs [CBM90, BCM $^{+}$92] | exp | exp |
| SAT with DPLL [KS92] | poly | exp |
| SAT with CDCL | exp $^{2}$ | exp |
| QBF with QBF-DPLL [Rin01] | poly | poly 3 |

Best practical algorithms exceed theoretical requirements. Why?

[^1]Outside PSPACE
Classical Planning
$\begin{array}{ll}s_{6} \\ a_{5}: \text { make dinner } & \\ a_{4}: \text { go home } & \text { time not explicit } \\ s_{3}: \text { an action } \sim \text { change between two } \\ s_{2}: \text { consecutive states }\end{array}$

## Temporal Planning

## EXPSPACE: Exponentially Long Tapes

- If (static) state is poly-size, where to encode an exponentially long tape?
- Dynamic state (= future events) can be exponential
- Proof idea: spread the TM working tape over timeline [Rin07b]

|  | 1st configuration |  |  |  |  |  |  |  |  |  |  |  |  |  | 2nd configuration |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| time | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | $\ldots$ |  |  |  |  |  |  |  |  |  |  |
| cell | 0 | 1 | 2 | 3 | 4 | 0 | 1 | 2 | 3 | 4 | $\ldots$ |  |  |  |  |  |  |  |  |  |  |
| $R / W$ | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |  |  |  |
| $A$ | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |  |  |  |
| $B$ | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |  |  |  |  |  |  |  |  |  |  |  |
| $\square$ | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |  |  |  |  |  |  |  |  |  |  |  |
| $\mid$ | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |  |  |  |
| $q_{0}$ | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |  |  |  |  |  |  |  |  |  |  |  |
| $q_{1}$ | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |  |  |  |  |  |  |  |  |  |  |  |

Temporal State $=$ Static State + Event Agenda


## Branching Plans

Sequential plans (= classical planning) sufficient when

- there is unique (known) initial state,
- all actions are deterministic

When actions or the environment non-deterministic, action choice depends on the past (observations)

- More complex forms of plans required:
- mapping from states to actions (full observability)
- mapping from belief states to actions (partial observability)
- programs/controllers that output actions (partial observability)
- Complexity far higher, from EXP to 2-EXP to unsolvable [Lit97, Rin04, MHC03].
- Analyzed with alternating Turing machines (ATM).


## Computation with Alternation (AND-OR Trees)



Branching Plans Alternation
Complexity Classes Defined with Alternation

## Complexity Classes

Define complexity classes

$$
\begin{aligned}
\text { APTIME } & =\bigcup_{k \geq 0} \operatorname{ATIME}\left(n^{k}\right) \\
\text { APSPACE } & =\bigcup_{k \geq 0} \operatorname{ASPACE}\left(n^{k}\right) \\
\text { AEXP } & =\bigcup_{k \geq 0} \operatorname{ATIME}\left(2^{n^{k}}\right) \\
\text { AEXPSPACE } & =\bigcup_{k \geq 0} \operatorname{ASPACE}\left(2^{n^{k}}\right)
\end{aligned}
$$

Interestingly, poly-space = alternating poly-time, and exponential time = alternating poly-space [CKS81]:

PSPACE $=$ APTIME
EXPSPACE = AEXP
EXP $=$ APSPACE
$2-E X P=$ AEXPSPACE

## Alternating Turing Machines

## Alternating Turing Machines

Nondeterministic Turing machines = search trees with OR nodes Alternating Turing machines $=$ search trees with both AND and OR nodes

Originally defined to model games and game trees [CKS81].

## Definition

A Turing machine $\left\langle\Sigma, Q, \delta, q_{0}, g\right\rangle$ consists of

1. an alphabet $\Sigma$ (a set of symbols),
2. a set $Q$ of internal states,
3. a transition function $\delta$ that maps $\langle q, s\rangle$ to a set of tuples $\left\langle s^{\prime}, q^{\prime}, m\right\rangle$ where $q, q^{\prime} \in Q, s \in \Sigma \cup\{\mid, \square\}, s^{\prime} \in \Sigma$ and $m \in\{L, N, R\}$.
4. an initial state $q_{0} \in Q$, and
5. a labeling $g: Q \rightarrow\{$ accept, reject, $\exists, \forall\}$ of states.

## EXP-hardness of Conditional Planning

Proof idea: Extend the PSPACE-hardness proof for classical planning with alternation (computation of an ATM is an AND/OR tree.)

- $\exists$ states: one deterministic action is chosen to the plan, from several possible ones.
- $\forall$ states: one nondeterministic action simulates all possible transitions.
- In branching plans, actions for $\forall$ states are followed by observing the new configuration and continuing the simulation accordingly.


## Simulation of Deterministic Turing Machines

PSPACE-hardness proof of classical planning


Branching Plans Alternation
Simulation of Alternating Turing Machines

EXP=APSPACE-hardness proof with full observability


## Simulation of Nondeterministic Turing Machines

## PSPACE=NPSPACE-hardness proof of classical planning



Correspondence of ATM executions and plans

An accepting computation tree is mapped to a plan:

1. $\exists$-configuration to action
2. $\forall$-configuration to observation + action


## Partial Observability vs. Branching

Extending Classical Planning with Branching and Observability Limitations [Rin04]


Alternation ~ Branching plans
Exponential tape ~Belief states

Branching Plans Polynomial Hierarchy

## The Polynomial Hierarchy



## Polynomial Hierarchy

Polynomial Hierarchy = PSPACE problems with limited alternation

## Example

$\Sigma_{2}^{p}=$ trees with polynomial depth and $\exists$ nodes followed by $\forall$ nodes


## Planning Problems in the Polynomial Hierarchy

## Conditional Planning with Poly-Size Plans

There is ( $\exists$ ) a poly-size plan such that
for all contingencies $(\forall)$ there is an execution leading to goals.
Most naturally expressed as a quantified Boolean formula [Sto76] with prefix $\exists \forall \exists$ [Rin99], but as the problem is in $\Sigma_{2}^{p}$, it is possible to express it as a QBF with prefix $\exists \forall$ [Rin07a].

## Conditional Planning with Short Executions

There is $(\exists)$ an action such that for all $(\forall)$ contingencies
there is $(\exists)$ an action such that for all $(\forall)$ contingencies
$\cdots$ a goal state is reached.
Conditional planning with $n$ consecutive actions expressible as a QBF prefix $n$ alternations
$\overparen{\exists \forall \exists \cdots \exists}$ [Tur02]. This covers all of the Polynomial Hierarchy.

## Uncertainty in Scheduling

Polynomial Hierarchy

## Limits of Planning: Unsolvability

Most of the scheduling problems encountered in practice are NP-complete
Harder scheduling problems typically involve uncertainty:

- expected makespan for stochastic task durations \#P-hard [Hag88]
- scheduling with uncertain resource availability [Rin13]
- general case PSPACE-complete
- $\Pi_{2}^{p}$-complete when all uncertainty resolved in the beginning
- $\Sigma_{2}^{p}$-complete when contingent schedules are poly-size


## Unsolvability from (Unbounded) Numbers

## Integer problems are unsolvable:

- Halting problem of general Turing machines encodable in classical planning + integers
- unbounded working tape ( $\sim$ two stacks of a pushdown automaton) encodable with:
- two integer variables, +1, test-even, multiply-by-2, divide-by-2
two integer variables, +1, test-even, shift-left, shift-right
- other possibilities
- Practical ways out:
- use bounded integers only (finite-state systems)
- consider bounded length plans only ( $\Rightarrow$ incompleteness)
- Planning is not only hard, but sometimes impossible.
- Main forms of unsolvable planning problems:
- unbounded numeric state variables (extension of classical planning)
- continuous change (planning with hybrid systems)
- optimal probabilistic planning with partial observability (optimal POMDPs)
- Impossibility associated with infinite state spaces and states of unbounded size
- Need to remember unbounded past history
- Finding optimal POMDP policies unsolvable [MHC03]
- Proof by reduction from probabilistic automata [Paz71]
- Practical ways out:
- finite-memory policies ( $\Rightarrow$ incompleteness) [MKKC99, LLS ${ }^{+}$99, CCD16]
- practical POMDP algorithms don't prove optimality

Hybrid Systems: Solvability vs. Unsolvability

- reachability (planning) for hybrid systems undecidable [HKPV95, CL00, PC07]
- many problems with only 2 continuous variables undecidable!!
- decidable cases for reachability: rectangular automata [HKPV95], 2-d PCD [AMP95], planar multi-polynomial systems [ČV96]
- semi-decision procedures: no termination when plans don't exist.


## Hybrid Systems: Solvability vs. Unsolvability

Approaches to Tackle the Unsolvability

- Limit to short plans ( $\Rightarrow$ incompleteness)
- non-linear polynomials highly complex [BD07], with functions like sine unsolvable
- some solvers give approximation guarantees [GKC13]
- approximation problematic due to lack of stability: small errors accumulate and cause plans to fail
- A main challenge is the development of more useful solvers
- General-purpose methods in general do not work well

| Complexity undecidable | Classes vs. Types of Planning optimal POMDPs [MHC03] |
| :---: | :---: |
| 2-EXP | non-deterministic partially observable [Rin04] |
| $\uparrow$ |  |
| EXPSPACE | unobservable ("conformant") [HJOO, Rin04] |
| NEXP |  |
| $\uparrow$ |  |
| EXP | probabilistic [Lit97];succinct MDPs [MGLA00] |
| PSPACE | classical [By194] |
| $\uparrow$ |  |
| PH | branching plans with short executions [Tưr02] |
| $\uparrow$ |  |
| NP | poly-length classical |
| P | flat MDPs [PT87] |
| ¢ |  |
| NLOGSPACE | s-t reachability |

## References I

```
```

[AMP95] Eugene Asarin, Oded Maler, and Amir Pnueli

```
```

[AMP95] Eugene Asarin, Oded Maler, and Amir Pnueli
Eugene Asarin, Oded Maler, and Amir Pnueli.
Eugene Asarin, Oded Maler, and Amir Pnueli.
[BCL+ 94] Jerry R. Burch, Edmund M. Clarke, David E. Long, Kenneth L. MacMillan, and David L. Dill.
[BCL+ 94] Jerry R. Burch, Edmund M. Clarke, David E. Long, Kenneth L. MacMillan, and David L. Dill.
Symbolic model checking for sequential circuit verification. (IIruits and Systems, 13(4):401-424, 1994
Symbolic model checking for sequential circuit verification. (IIruits and Systems, 13(4):401-424, 1994
[BCM+}\mp@subsup{}{}{+}92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang
[BCM+}\mp@subsup{}{}{+}92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang
Symbolic model checking: 1020 states and beyond
Symbolic model checking: 1020 states and beyond
Christopher W. Brown, , and James H. Davenport
Christopher W. Brown, , and James H. Davenport
The compericolquantifier elimination and cylindrical algebraic decomposition.
The compericolquantifier elimination and cylindrical algebraic decomposition.
The complexity of quantifier elimination and cylindrical algebraic decomposition. Computation, pages 54-60, 2007,
The complexity of quantifier elimination and cylindrical algebraic decomposition. Computation, pages 54-60, 2007,
[BM99] Alberto Bemporad and Manfred Morari
[BM99] Alberto Bemporad and Manfred Morari
Control of systems integrating logic, dynamics, and constraints.
Control of systems integrating logic, dynamics, and constraints.
Automatica, 35(3):407-427, 1999,
Automatica, 35(3):407-427, 1999,
[Byl94] Tom Bylander.
[Byl94] Tom Bylander.
The computational complexity of propositional STRIPS planning
The computational complexity of propositional STRIPS planning
Artificial Intelligence, 69(1-2):165-204, 1994.
Artificial Intelligence, 69(1-2):165-204, 1994.
[CBM90] Olivier Coudert, Christian Berthet, and Jean Christophe Madre.
[CBM90] Olivier Coudert, Christian Berthet, and Jean Christophe Madre.
Verification of synchronous sequential machines based on symbolic execution.
Verification of synchronous sequential machines based on symbolic execution.
INoseph Sifakis, editor, Automatic Verification Methods for Finite State Systems, International Workshop, Grenoble, France, June 12-14,
INoseph Sifakis, editor, Automatic Verification Methods for Finite State Systems, International Workshop, Grenoble, France, June 12-14,
1989. Proceedings, volume 407 of Lecture Notes in Computer Science, pages 365-373. Springer-Verlag, 1990
1989. Proceedings, volume 407 of Lecture Notes in Computer Science, pages 365-373. Springer-Verlag, 1990
CCD16] Krishnendu Chatteriee, Martin Chmelik, and Jessica Davies.
CCD16] Krishnendu Chatteriee, Martin Chmelik, and Jessica Davies.
A symbal SAT- bed algoinm fo lostsure cability with small stretegie in POMDPs.
A symbal SAT- bed algoinm fo lostsure cability with small stretegie in POMDPs.
In Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAl-16), 2016.
In Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAl-16), 2016.
A. Chandra, D. Kozen, and L. Stockmeyer
A. Chandra, D. Kozen, and L. Stockmeyer
Journal of the ACM, 28(1):114-133, 1981

```
    Journal of the ACM, 28(1):114-133, 1981
```

```
Christopher W. Brown,, and James H. Davenpor-i
```

```
Christopher W. Brown,, and James H. Davenpor-i
```


## References II

| 00] | Franck Cassez and Kim Larsen. <br> The impressive power of stopwatches. <br> In Catuscia Palamidessi, editor, CONCUR 2000 - Concurrency Theory, volume 1877 of Lecture Notes in Computer Science, pages 138-152. Springer-Verlag, 2000 |
| :---: | :---: |
| [Coo71] | Stephen A. Cook. <br> The complexity of theorem-proving procedures. <br> In Proceedings of the Third Annual ACM Symposium on Theory of Computing, pages 151-158, 1971. |
| [ČV96] | Kārlis Čerāns and Juris Viksna. <br> Deciding reachability for planar multi-polynomial systems. <br> In Rajeev Alur, Thomas A. Henzinger, and Eduardo D. Sontag, editors, Hybrid Systems III, volume 1066 of Lecture Notes in Computer Science, pages 389-400. Springer-Verlag, 1996. |
| [ENS91] | Kutluhan Erol, Dana S. Nau, and V. S. Subrahmanian. <br> Complexity, decidability and undecidability results for domain-independent planning: A detailed analysis. Technical Report CS-TR-2797, University of Maryland, Computer Science Department, 1991. |
| [Gef00] | Héctor Geffner. <br> Functional STRIPS: a more flexible language for planning and problem solving. In Logic-based Artificial Intelligence, pages 187-209. Springer-Verlag, 2000. |
| [GKC13] | Sicun Gao, Soonho Kong, and Edmund M. Clarke. <br> dReal: An SMT solver for nonlinear theories over the reals. <br> In Maria Paola Bonacina, editor, Automated Deduction - CADE-24, volume 7898 of Lecture Notes in Computer Science, pages 208-214. Springer-Verlag, 2013. |
| [GPM89] | Carlos E. Garcia, David M. Prett, and Manfred Morari. Model predictive control: Theory and practice - a survey. Automatica, 25(3):335-348, 1989. |
| [GW83] | Hana Galperin and Avi Wigderson. Succinct representations of graphs. Information and Control, 56:183-198, 1983. (See [Loz88] for a correction.). |
| [Hag88] | J.N. Hagstrom. <br> Computational complexity of PERT problems. Networks, 18(2):139-147, 1988. |

## References IV

```
[MHC03] Omid Madani, Steve Hanks, and Anne Condon.
    On the undecidability of probabilistic planning and related stochastic optimization problems.
    Artificial Intelligence, 147(1-2):5-34, 2003.
[MKKC99] Nicolas Meuleau, Kee-Eung Kim, Leslie Pack Kaelbling, and Anthony R. Cassandra.
    In Uncertainty in Artificial Intelligence, Proceedings of the Fifteenth Conference (UA1-99), pages 417-426. Morgan Kaufmann Publishers, 1999,
[MMZ+ 01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
    Canf: engineering an efficient SAT solver.
MSS99] João P. Marques-Silva and Karem A. Sakallah.
    GRASP: a search algorithm for propositional satisfiability.
[Pap94] Christos H. Papadimitriou.
    Computational Complexity. Company, 1994.
Paz71] Azaria Paz
        abilistic Automata.
        Academic Press, 1971.
André Platzer and Edmund M. Clarke.
    The image computation problem in hybrid systems model checking. Hybrid Systems: Computation and Control, volume 4416 of Lecture Notes
    h Alberto Bemporad, Antonio Bicchi, and Giorgio Butlazzo, ed
PT87] Christos H. Papadimitriou and John N. Tsitsiklis.
    The complexity of Markov decision processes.
Rin991 Jussi Rintanen
    Jonstructing conditional plans by a theorem-prover.
```


## References III

[HJOO] Patrik Haslum and Peter Jonsson.
Some results on the complexity of planning with incomplete information. I Recent Advances in Al Planning. 5th Eurooen In Recent Advances in Al Planning. Sth European Conference on Planning, ECP'99, Durham,
number 1809 in Lecture Notes in Artificial Intelligence, pages 308-318. Springer-Verlag, 2000.
Thomas A. Henzinger, Peter W. Kopke, An
What's decidable about hybrid automata?
In Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, pages 373-382, 1995.
R.M. Karp.
Reducibility among combinatorial problems.

In R.E. Miller and J. W. Thatcher, editors, Complexity of Computer Computations, pages 85-103. Plenum Press, 1972
Henry Kautz and Bart Selman. Planning as satisfiability.
Antonio Lozano and José L. Balcázar
Antonio Lozano and José L. Balcázar.
In Manfred Nagl, editior, Graph-Theoretic Concepts in Computer Science, 15th International Workshop, WG'89, number 411 in Lecture Notes in Computer Science, pages 277-286. Springer-Verlag. 1990
[Lit97] Michael L. Littman.
Probabilistic propositional planning: Representations and complexity. In Proceedings of the 14th National Conference on Artificial I
Conference (IAAl-97), pages 748-754. AAAl Press, 1997.
[LLS ${ }^{+}$99] Christopher Lusena, Tong Li, Shelia Sittinger, Chris Wells, and Judy Goldsmith
My brain is full: When more memory helps. In Uncertainty in Artificial Intelligence, Proceedings of the Fifteenth Conference (UA1-99), pages 374-381. Morgan Kaufmann Publishers, 1999,
[Loz88] Antonio Lozano.
NP-hardness of succinct representations of graphs.
Bulletin of the European Association for Theoretical
Bulletin of the European Association for Theoretical Computer Science, 35:158-163, June 1988
[MGLA00] Martin Mundhenk, Judy Goldsmith, Christopher Lusena, and Eric Allender ecision process problems. Journal of the ACM, 47(4):681-720, 2000.

## References V

[Rin01] Jussi Rintanen.
Partial implicit unfolding in the Davis-Putnam procedure for quantified Boolean formulae.
R. Nieuwenhuis and A Voronkov editors. Logic for Programming Artificial Intelligence and Reasoning. 8th International Conference

2001, Havana, Cuba, December 3-7, 2001. Proceedings, number 2250 in Lecture Notes in Artificial Intelligence, pages 362-376.
[Rin04]
Springer-veriag,
Complexity of planning with partial observability.
II ICAPS 2004. Proceedings of the Fourteenth International Conference on Automated Planning and Scheduling, pages 345-354. AAA
[Rin06]
Jussi Rintanen.
In ECAI 2006. Proceedings of the 17th European Conference on Artificial Intelligence, pages 600-604. IOS Press, 2006
Jussi Rintanen.
Asymptotically optimal encodings of conformant planning in QBF.
Asymptoically optimal encooings of conformant planning in QBF.
In Proceedings of the 22nd AAAl Conference on Artificial Intelligence (AAA1-07), pages 1045-1050. AAAI Press, 2007,
[Rin07b] Jussi Rintanen.
Complexity of concurrent temporal planning.
In ICAPS 2007. Proceedings of the Seventeenth International Conference on Automated Planning and Scheduling. pages 280-287. AAAI
Press, 2007
[Rin08] Jussi Rintanen.
Regression for classical and nondeterministic planning.
in ECAI 2008. Proceedings of the 18th European Conference on Artificial Intelligence, pages 568-571. IOS Press, 2008.
[Rin09]
Jussi Rintanen.
Planning and SAT.
In Handbook of Satisfiability, number 185 in Frontiers in Artificial Intelligence and Applications, pages 483-504. IOS Press, 2009
[Rin13]
Scheduling with contingent resources and tasks.
In Proceedings of the International Conference on Automated Planning and Scheduling, ICAPS 2013, pages 189-196. AAAI Press, 2013.
[Sto76]
L. J. Stockmeyer.
he polynomial-time hierarchy

## References VI

[Tur02] Hudson Turner.
Polynomial--ength planning spans the polynomial hierarchy.
In Logics in Artifificial Intelligencnce, European Conference, JELIA 2002, number 2424 in Lecture Notes in Computer Science, pages 111-124.
Hui Ye, Anthony N. Michel, and Ling Hou.
Hui Ye, Anthony N. Michel, and Ling Hou.
Stability theory for hybrid dynamical systems.
IEEE Transactions on Automatic Control, 43(4):461-474, 1998.


[^0]:    ${ }^{1}$ Under partial observability, features of actions has stronger impact [Rin04].

[^1]:    ${ }^{2}$ Conflict-Driven Clause Learning algorithm [MSS99, MMZ ${ }^{+}$01] has no inherent exponential memory requirement, but also no clear polynomial bounds.
    ${ }^{3}$ Test if a plan exists. Output plan one action at a time.

