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Optimal Reconfiguration for Supply Restoration
with Informed A* Search
Adi Botea, Jussi Rintanen, and Debdeep Banerjee

Abstract—Reconfiguration of radial distribution networks is
the basis of supply restoration after faults and of load balancing
and loss minimization. The ability to automatically reconfigure
the network quickly and efficiently is a key feature of autonomous
and self-healing networks, an important part of the future vision
of Smart Grids.

We address the reconfiguration problem for outage recovery,
where the cost of the switching actions dominates the overall cost:
when the network reverts to its normal configuration relatively
quickly, the electricity loss and the load imbalance in a temporary
suboptimal configuration are of minor importance.

Finding optimal feeder configurations under most optimality
criteria is a difficult optimization problem. All known complete
optimal algorithms require an exponential time in the network
size in the worst case, and cannot be guaranteed to scale up to
arbitrarily large networks. Hence most works on reconfiguration
use heuristic approaches that can deliver solutions but cannot
guarantee optimality. These approaches include local search, such
as tabu search, and evolutionary algorithms.

We propose using optimal informed search algorithms in the
A* family, introduce admissible heuristics for reconfiguration,
and demonstrate empirically the efficiency of our approach.
Combining A* with admissible cost lower bounds guarantees that
reconfiguration plans are optimal in terms of switching action
costs.

Index Terms—Smart Grid, power supply restoration, reconfig-
uration, search methods.

I. INTRODUCTION

Reconfiguration of distribution networks is necessary for
maintaining power supply for example during network main-
tenance and for restoring power after an outage and before the
fault leading to it has been repaired [1]. It is also the basis of
avoiding overloads and minimizing resistive losses [2].

Fully automatic and efficient reconfiguration is increasingly
important for the Smart Grid, the future electricity networks
which are envisioned to be autonomous and self-healing. For
example, Brown [3] describes the Smart Grid as an “enabling
system that can quickly and flexibly be reconfigured”. An
increasing number of distributed generation and storage de-
vices will make distribution networks more complex and more
dynamic, making manual or semi-automatic reconfiguration,
due to its slowness, less of an option. Ipakchi and Albuyeh [4]
argue that automated switching will be required to address
overload, voltage and phase imbalance issues caused by the
presence of a substantial number of plug-in electrical vehicles
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in future distribution networks. Fully automatic reconfigura-
tion should be quick, efficient (in terms of its immediate
and long term costs to network operation), reliable, and it
should not compromise the safety by violating the operating
constraints of the network.

Several approaches to the reconfiguration problem have
been proposed. Zhou et al. [5] and Ciric and Popovic [6] use
mixed integer linear programming, and Toune et al. [7] use
tabu search. All of these works mention supply restoration
as their main motivation. A number of other works primarily
address loss reduction and load balancing, including the early
work by Merlin and Back [8], which proposes a branch
and bound algorithm, as well as more recent works, for
example by Morton and Mareels [9]. In the latter, the focus
is on loss minimization in the long term, and for this reason
the cost of the switching operations needed to achieve the
desired configuration is not important and it is ignored. Loss
minimization is also the focus of recent work by Rao and
Narasimham [10]. They introduce a greedy heuristic based
on the idea that closing an open switch with a larger voltage
difference between its two adjacent lines results in a larger
loss reduction. Every time a switch is closed, another switch
is opened to maintain the radial structure of the network.
In the presence of distributed generation, when small scale
power generators are present inside the distribution network,
the radiality requirement must be relaxed [11]. We will discuss
the issues arising from distributed generation later.

Most of the above works cannot give guarantees for the
quality of the reconfiguration plan, in terms of the cost of
executing the plan. Those that can, do it so by exhaustive
enumeration of all possible plans, which is infeasible for
distribution networks of realistic sizes.

As suggested earlier, several criteria can be used to measure
the quality of a reconfiguration plan. The most common ones
include minimizing the area left without power, supplying
most important customers such as hospitals with a higher
priority, minimizing the cost of the switching actions, and
minimizing the power loss in the system. Some techniques
aim at finding plans that are good according to several criteria,
treating the problem as a multi-objective optimization problem
[12], [13]. Ahuja et al. [12] use an algorithm that combines ant
colony optimization with artificial immune systems. Kumar et
al. [13] describe a technique based on genetic algorithms. In
practice, such techniques can find good solutions. However,
being based on non-systematic search, such as ant colony op-
timization or genetic algorithms, they cannot guarantee finding
optimal solutions and cannot determine whether a solution
they have found is optimal. In contrast, systematic search
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algorithms, such as A* [14], do provide solution optimality
guarantees and are guaranteed to find an optimal solution given
enough time and memory resources.

In this work we propose an A*-based algorithm that is
guaranteed to find a least-cost reconfiguration plan. The cost
of a plan is the sum of the costs of the switching actions
in the plan. We restrict our attention to level 1 plans, which
never move loads from a healthy feeder to another feeder. The
resulting configuration satisfies capacity and other constraints,
and will supply power to all non-faulty parts of the network,
unless the capacity constraints or the network topology makes
this impossible.

In our algorithm, we combine two quality criteria, switching
costs and supplied area, and additionally require that all
capacity constraints are respected. We ignore other quality
criteria, such as minimizing resistive losses. In the case
of reconfiguration for maintenance or outage recovery, the
original configuration of the network is restored after the
necessary repairs have been made, and therefore the temporary
configuration will be used only for a relatively short time.
Hence, maximizing the supplied area and minimizing the cost
of performing the switching actions are more important than
the minimization of resistive losses.

The A* search algorithm [14] and related algorithms such
as IDA* [15] have two important properties. First, they are
guaranteed to find a best possible solution whenever solutions
exist. Second, among all such search algorithms that traverse
the search space one state at a time, they are guaranteed to
make the smallest possible number of search steps [14].

Applying A* to the reconfiguration problem requires defin-
ing the search space, the cost function to optimize, and an
admissible heuristic (cost lower-bound function) that justifies
pruning the search space without losing optimal solutions.
The admissible heuristic is a lower bound on the cost-to-go
from the current state to a goal state. Admissibility guarantees
that an optimal solution is found [16]. The informativeness
of a heuristic (that is, its accuracy in terms of the difference
between the real and the estimated cost) can have a strong
impact on the overall performance of a search algorithm.

The main scientific contribution of this work is the definition
of an informative and admissible heuristic for reconfiguration
in outage recovery.

Our search space is a collection of network configurations,
characterized by the open/closed status of all switches in the
network. This low-level state encoding is converted into a more
structured representation, which identifies feeders and isolated
regions that need to be resupplied with power.

As said earlier, the cost of a switching plan is defined as the
sum of the costs of the individual switching actions. Different
actions can have different costs. For example, one can consider
monetary costs reflecting the wear and tear of the switching
devices, and the cost incurred by delays when recovering from
outages. Variable action costs allow to encode a problem more
realistically but, on the other hand, they often tend to increase
the difficulty of a cost-optimal search. As a particular case, if
all switching actions in a given network happen to have the
same cost, then minimizing the cost of a plan is equivalent to
minimizing the number of actions in the plan.

The target (goal) configuration is defined in terms of the
conditions it has to satisfy. These include the requirements
that capacity constraints of the network are not violated, and
that all customers will be supplied (except for customers at
the faulty lines).

We evaluate our ideas with networks of a realistic size,
containing up to over 200 lines and 200 switches. The results
show that our algorithm can compute cost-optimal switching
plans quickly in both single-fault and multiple-fault scenarios.

The rest of this paper is structured as follows. The next
section reviews further related work. It is followed by a
section that defines in detail the problem that we address.
In Section IV we provide background information on search
algorithms. Section V provides algorithmic details of our
approach, including a description and analysis of our new
admissible heuristic. An experimental evaluation is presented
in Section VI, followed by concluding remarks.

II. RELATED WORK

Heuristic search has been recognized as a viable approach to
computing switching plans for distribution networks. However,
many of the earlier works do not understand “heuristics” in
the same sense as we do, as an estimate of the solution cost.
Nevertheless, some of the earlier works do use systematic
search algorithms for finding reconfiguration plans.

Morelato and Monticelli [17] generate a search tree by
defining one binary decision variable for each switch in a
network. A node in the search tree is a partial assignment
of the binary variables. At each node in the search tree, one
variable (switch) is selected for branching, and each of the
two possible values (open and closed) generates one branch
in the tree. The authors mention breadth-first, depth-first and
best-first search as possible search strategies and test their
ideas with a depth-first search implementation without using a
formalized heuristic, and without considering algorithms that
can in practice guarantee the optimality of solutions.

Wu et al. [18] use a representation of a search space that is
different from that of Morelato and Monticelli [17]. A node
encodes a network configuration. A transition from a parent to
a successor node is a two-step action (CLOSE OPEN), chosen
in such a way that the radial structure of the network is
preserved.

Devi et al. [19] address the supply restoration problem by
using breadth-first and best-first search strategies. As in [18],
states in the search space are complete network configurations,
not just partial assignments of binary switch variables. The
quality of solutions is defined as the number of switching
actions. Best-first search is combined with a heuristic that
selects for expansion a node with the smallest overloading.
Similarly to the previous algorithms, this work work cannot
guarantee the optimality of solutions.

Non-systematic search methods such as genetic algorithms,
tabu search and simulated annealing have often been applied
to power supply restoration [7], [20], [21], [22]. Since these
methods do not keep track of the already visited parts of the
search space, they are inherently incomplete and unable to
guarantee the optimality of solutions they find.
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III. PROBLEM STATEMENT

The literature shows a range of variations of the power
supply restoration problem, for example with differences in
the definition of the state space, the type of solutions sought,
and the optimality criteria. Hence it is necessary to formally
define the features of the problem that we address in this work.

A distribution network model is a graph where nodes
model elements of the physical network and edges model
connections between elements. We focus mainly on lines,
buses and switches. As discussed later in this section, other
network elements, such as substations and transformers, can be
modelled if desired. Our definition of switches covers all forms
of switchgear, including circuit-breakers and reclosers, that can
be opened and closed to respectively disconnect and connect
two parts of the network. Each element has one or more
connections to adjacent elements in the network. A switch has
exactly two connections. A line connects with other elements
of the network only at its two end points.

A switch can be either open or closed. In the open state a
switch physically disconnects the two elements adjacent to it.
Switching actions change the state of a switch. The cost of a
switching action for a switch s is cost(s) > 0. The cost of a
switching plan is the sum of the costs of its switching actions.
A plan is cost-optimal if no plan with a smaller cost exists.

Distribution networks have a meshed topology, which means
that there can be many possible ways (paths from a source)
to feed a given load. A meshed topology is useful because
it provides several options for reconfiguration. Despite the
possibility to feed a load via multiple alternative pathways,
distribution networks are usually kept in a radial configuration,
where a load is fed from only one source, via only one
path. This is achieved by setting the open/closed status of
disconnectors (switches) in such a way that, if we ignore paths
that contain open disconnectors, the network is a collection of
tree structures, called feeders. Let us emphasize that feeders
are disjoint and contain no cycles.

For simplicity, upstream elements such as a zone substation
and a transformer that provide power to a given feeder are not
represented explicitly as nodes in the graph model. They are
abstracted into the root node of the feeder at hand. We assume
that the root node of a feeder is a circuit breaker (e.g., a circuit
breaker between the transformer and the feeder). Our model,
however, is not limited to such an assumption. For example,
when several feeders share a substation of a given capacity,
but each feeder has a transformer with its own capacity, the
substation could become a root node, and each transformer
would become an interior node in the graph model. Each of
these nodes would be assigned the capacities of the network
elements that they model.

We call the feeder root nodes substation circuit breakers, to
differentiate them from circuit breakers inside the distribution
network. As shown later, the root node is assigned a capacity
that reflects the capacity of upstream elements such as a
transformer or a substation.

Figure 1 shows a sample network used as a running example
in the paper. Substation circuit-breakers are drawn as triangles.
Other switches are boxes, which can be open (gray contour

Fig. 1. Toy network used as a running example.

Fig. 2. Example of an isolated region.

and white background) or closed (black contour and gray
background). The lines that belong to the same feeder are
drawn using the same line pattern (e.g., solid, dashed or
dotted). In the picture, loads are skipped for simplicity.

An isolated region is a maximal contiguous sub-network
that contains no faulty lines and that is not supplied with
power. If every path from an isolated region r to any substation
circuit-breaker contains at least one faulty line, then r cannot
possibly be supplied with power. Hence such isolated regions
are ignored in the rest of the paper.

Figure 2 shows an example of an isolated region. It contains
lines L4, L7, L8 and the two interior switches S5 and S6. The
switches on the frontier are S3, S4, S7 and S8. The isolated
region is a result of a permanent fault on line L3. To isolate
the faulty line, all adjacent switches (S2, S3, S11) are opened
and, as a side effect, the isolated region is left without power.

Given an isolated region or feeder r, let L(r) be the set
of all modelled elements (i.e., graph nodes) in r, except for
switches. The set S(r) contains all switches, both open and
closed, linked to at least one element that belongs to r. The
frontier F(r) is the collection of all open switches that connect
an element in r with an element outside r:

F(r) = {s ∈ S(r)|s is open ∧ |L(r) ∩ E(s)| = 1}.

For a switch s, E(s) contains the two elements adjacent to s.
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The set C(r) contains all closed switches inside r:

C(r) = {s ∈ S(r)|s is closed}.

A substation circuit-breaker b is assigned a measure κ(b)
representing the maximum power flow that can be supplied by
the upstream network through it. In practice, this is determined
by considering the capacity of upstream network elements
such as the adjacent transformer or substation.

Let us introduce the capacity and load constraints that in-
volve elements such as buses, lines, and breakers. An element
in the graph model e has a capacity κ(e) and a local load
λ(e). The local load can be zero. We assign local loads to
load buses, which thus will have a positive λ value. However,
the graph model is flexible enough to allow assigning arbitrary
capacities and local loads to any elements.

We assume that the κ and the λ values are known and fixed.
The load λ(r) of a sub-network r, such as a feeder or an
isolated region, is the sum of the local loads of the contained
elements:

λ(r) =
∑
e∈L(r)

λ(e).

The total load of a node e in the graph model is computed
recursively by summing up the loads of the elements down-
stream, as well as the local load of e, if any. For example,
for a line l, the total load γ(l) is the sum of the loads of
all elements in the feeder’s sub-tree tl rooted at l and going
downstream from l:

γ(l) =
∑

e∈L(tl)

λ(e).

For a substation circuit-breaker b, γ(b) is defined as the load
of the feeder fb rooted at b, which is the sum of all local loads
on all elements of fb:

γ(b) = λ(fb) =
∑

e∈L(fb)

λ(e).

The constraints that we consider state that the total load
downstream a given network element e (e.g., line, transformer,
substation circuit breaker) should not exceed the capacity of
that element:

γ(e) ≤ κ(e).

The reconfiguration problem we address in this work covers
outage recovery after the emergence of permanent faults.
We assume that after a fault appears, the circuit-breakers
and reclosers go through their pre-programmed sequence of
operations to try to recover from the fault, and after this
program has completed, the permanent fault has left part of
the feeder without power.

More specifically, after a permanent fault, one of the circuit-
breakers on a path from the fault to the substation of the
corresponding feeder opens automatically. Possible reclosing
actions may try to resupply power, but the reclosers will even-
tually give up and remain open, leaving a part of the feeder
without power. The power supply restoration problem involves
finding a sequence of switching actions that accomplish the
following objectives. First, isolate the fault by opening the
nearest switches downstream and upstream. As soon as the

fault has been isolated, the circuit-breakers upstream can be
closed to resupply part of the feeder. Second, the outage area
downstream from the fault is resupplied by further switching
actions. The first part is computationally easy (assuming that
there is no uncertainty about the fault location). The second
part is more challenging. This is the part that we attack with
a cost-optimal search algorithm.

As some existing types of switches can’t operate under load,
some switching actions in a reconfiguration plan might require
further attention to make sure they operate safely. We ensure
this by temporarily opening the upstream circuit breaker that is
the closest to the switch at hand s. This minimizes the network
areas that will be temporarily disconnected. The additional
costs brought by such extra circuit breaker operations need to
be taken into account at search time. This can be achieved by
adding the extra costs to the cost of operating the switch s.
When more than one switch require (temporarily) opening the
same circuit breaker, then the extra costs are added only once.

In this work we seek only level 1 plans, which do not
allow to transfer loads from one healthy feeder to another for
example to decrease the load of the former. Level 1 plans are
often, but not always, sufficient for resupplying power to all
healthy lines. Level n plans, which allow load transfers within
chains of up to n > 1 feeders, are sometimes needed to avoid
violating capacity constraints.

Depending on the quality criteria at hand, goal states (net-
work configurations) can be defined in two alternative ways.
A weak definition considers as goal states all configurations
that respect the load and capacity constraints. Having regions
without power is acceptable. Each state has a quality score that
measures how much of the network is still without power.
According to the weak definition, states where no region is
left without power (except, of course, for the faulty lines) are
considered optimal.

A stronger definition of goal states require that all parts of
the network (again, except for the permanently faulty lines)
are supplied power. An equivalent way to distinguish between
weak and strong solutions is that the former allow isolated
regions without power, whereas the latter do not.

In this work we consider the strong definition. It allows
optimizing two distinct quality criteria at a time. First, we
require re-supplying all non-faulty regions. Secondly, we seek
switching plans of optimal cost (as indicated earlier). Opti-
mizing the cost is more general than minimizing the number
of switching actions. The two options are identical when all
actions have the same cost. However, in general, different
switching actions have different costs.

Figure 3 illustrates two restoration plans for the isolated
region shown in Figure 2. For simplicity, the actions for
isolating the faulty line L3 and reclosing CB1 are not shown
here. We also skip in this example extra circuit breaker
operations that might be required to avoid operating switches
under load. The first plan resupplies the entire isolated region
by connecting it to the feeder of CB2 with one close action.
The second plan feeds different parts of the isolated region
from different feeders.

Notice that the cost of the first plan is lower than the cost
of the second one, since the actions in the latter are a proper
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a) CLOSE S7

b) OPEN S6 CLOSE S7 CLOSE S8

Fig. 3. Sample plans.

superset of the former. However, depending on the actual loads
and capacities, it might be the case that the first plan is not
valid. For example, assume there is a load bus with a local
load of 1 unit attached to that each line in the network. If the
capacity of the CB2 circuit-breaker is κ = 7, then the first
plan is invalid because it would require CB2 to feed 8 load
buses, which exceeds its capacity.

Assuming that it is possible to resupply all disconnected
parts, the algorithm will find a strong solution of minimal cost.
In addition, the best partial restoration plan (i.e., weak plan)
encountered so far in the search, before finding a complete
solution, can be cached and provided on demand. This results
in an any-time functionality, allowing it to provide a weak
solution fast and to gradually improve the quality of weak
solutions until a strong solution of optimal cost is found or
the algorithm proves that no strong solution exists.

IV. BACKGROUND ON SEARCH

Systematic search strategies, such as breadth-first, depth-
first and best-first search, explore a space by expanding one
node at a time. A node encodes a state (i.e., a network
configuration in this work) and other information, such as a
pointer to the parent node and the cost of the path from the root
node to the current node. Expanding a node means generating
its successors and adding them to a list of nodes that have been
generated but not expanded yet (the Open list). The Open list

is initialized to the root node, which represents the initial state
of the problem. The exploration continues until a goal node
is about to be expanded (in which case a solution has been
found) or until the Open list becomes empty (the problem has
no solution). Each expanded node is moved from the Open
list to the Closed list.

Keeping track of all nodes visited so far (in the Open and
Closed lists) is useful for both detecting duplicate states during
search and for reconstructing the action sequences that lead to
a goal node.

Completeness is an important property of search algorithms.
An algorithm is complete if it is guaranteed to find a solution
whenever one exists.

A* [14] is a complete search algorithm that maintains its
Open list ordered according to the f -values of the contained
nodes. The f -value of a node n is computed as f(n) = g(n)+
h(n), where g(n) is the cost of the path from the root node to
n, and h(n) is an estimate (called a heuristic) of the cost from
n to a goal node. Nodes with a smaller f -value are considered
more promising.

A heuristic h is admissible if it never overestimates the true
smallest cost h∗ to a goal node: ∀n, h(n) ≤ h∗(n). Using
admissible heuristics guarantees that the solutions returned by
A* are cost-optimal. The cost of the solution is the sum of
the costs of all actions on the path from the root node to the
goal node. The larger the value of a heuristic (i.e., closer to
the true optimal cost), the faster A* tends to be. Admissible
heuristics with larger values are said to be more informative.

Consistency is a property stronger than admissibility (i.e.,
every consistent heuristic is also admissible). A heuristic h is
consistent if, for every parent–successor pair (n, n′), we have
c(n, n′) + h(n′) ≥ h(n), where c(n, n′) is the cost of the
transition from n to n′. The advantage of consistent heuristics
is that A* returns cost-optimal solutions without having to
expand a state more than once. For more details on A* and
heuristic search, see [16].

If no heuristic is used (i.e., nodes are sorted in the Open list
according to their g values), then A* is equivalent to uniform-
cost search, a blind search strategy that returns cost-optimal
solutions [23]. Furthermore, when all actions have the same
cost, these two become equivalent to breadth-first search.

When optimality is not required or it is too difficult to
achieve, the WA* (Weighted A*) algorithm [24] can be used
instead. This is a variant of A* with a parameter W which
controls the quality of solutions, trading solution quality to
computation time. As opposed to other sub-optimal search
algorithms, WA* provides an upper bound on the solution
sub-optimality. For example with W = 1.1 the algorithm will
return a solution with a cost at most 1.1 times the optimum. A
higher value of W may lead to finding solutions much faster.

V. OUR RECONFIGURATION ALGORITHM

The search algorithm we use as the basis of our recon-
figuration algorithm is A* [23]. We enhance the standard
algorithm with a new heuristic hA specific to the reconfigura-
tion problem, and with a specialized technique for generating
successors. We call hA the additive heuristic.



6

As shown in Section IV, the heuristic determines how nodes
are ordered in the Open list. Besides guiding the search, the
additive heuristic has the ability to detect dead-ends in the
search space. A dead-end is a state from which no goal state
can be reached. Identifying dead-end states eliminates the need
to search their subtrees and thus it can lead to significant
speed-ups.

The successor generation implements a partial order re-
duction strategy [25], which reduces the number of action
sequences that need to be considered. The basic idea is to
avoid considering two unrelated actions a1 and a2 in both
orders, a1 followed by a2, and a2 followed by a1. This
reduces the amount of search needed, without compromising
the completeness or the optimality of the algorithm.

Recall that a state (network configuration) σ in our search
space is characterized at a low level of abstraction by the
open/closed status of all switches and circuit-breakers. Starting
from this representation, larger parts of the network, such as
feeders and isolated regions, are identified and used in the
computation of the heuristic and in the successor generation
procedure. The rest of this section provides details on both the
heuristic and the successor generation.

A. Additive heuristic
Consider a network state σ. The heuristic hA(σ) estimates

(as a lower bound) the cost of a switching plan that reaches a
goal state starting from σ. It is defined as

hA(σ) =
∑

r∈I(σ)

hL(r),

where I(σ) is the set of all isolated regions in the state
(network configuration) σ. For each isolated region r in the
current state, hL(r) is a lower bound on the cost of resupplying
r (i.e., having all loads connected to a substation without
violating capacity constraints).

Now we focus on the computation of hL(r) for a given
isolated region r. If k is a lower bound on the number of
close actions on the frontier of r required to resupply r, then
we need to open at least k − 1 internal switches in order to
maintain the radial structure of the network. Hence a lower
bound on the cost to resupply the isolated region r is

hL(r) = k × min
s∈F(r)

cost(s) + (k − 1)× min
s∈C(r)

cost(s).

As a simple example, if all switching actions have a constant
cost of 1, then hL(r) = 2k − 1. We remind the reader that
F(r) contains the frontier switches and that C(r) is the set of
all closed switches in r.

It remains to show how to compute k for a given isolated re-
gion r. Intuitively, we compute the maximum amount of power
that every switch on the frontier could possibly provide, and
then count how many switches would be necessary to provide
all the power needed inside the isolated region. Formally, for
every open switch s between r and a feeder f , we define
the maximum input µ(s) of s as being the largest amount of
power that can be provided by f through s without violating
the capacity and load constraints for f . It is computed as

µ(s) = min
e∈π

(κ(e)− γ(e)) (1)

where π contains all elements e, along the path from f ’s
substation breaker to s, for which capacity constraints have
been defined (e.g., elements e can correspond to lines and the
substation breaker). The factor κ(e)−γ(e) is sometimes called
the residual capacity of that element [18].

For an open switch s between r and another isolated region
r′, an upper bound on the maximum input of s is

µ(s) = max
e∈E(s)

(κ(e)− λ′(e))

where E(s) contains the two elements connected to s, and
λ′(e) is the load (if any) connected to e (e.g., via a bus) without
any switch between e and the load. For all other switches on
the frontier of r (e.g., a switch to a faulty line), the maximum
input is set to 0.

The switches on the frontier F(r) are ordered decreasingly
according to their maximum input µ. Then, as part of the so-
called k-iteration process, we keep adding up their maximum
inputs until we reach (or exceed) the load λ(r) or until all
switches have been considered. In the first case, the number
of switches considered gives the value k. In the second
case, where λ(r) cannot be reached even after considering
all frontier switches, a dead-end has been discovered and
therefore hL(r) is set to ∞.

The additive heuristic is computed for every state that is
encountered in a search. There is a low upper bound on the
effort of computing the additive heuristic. Assume that R is an
upper bound on the size of an isolated region, F is an upper
bound on the size of a feeder, N is an upper bound on the
number of the isolated regions, and K is an upper bound on
the frontier of an isolated region. Frontier switches between
two isolated regions bring only a constant overhead, so they
can safely be ignored in this complexity discussion.

When the additive heuristic is computed from scratch, an
upper bound on the computation time is

O(N × [(K × F ) +R]).

Notice that the values N , K, F and R for an arbitrary
state depend on N0, K0, F0 and R0, the corresponding values
in the initial state. For example, N can never increase along
an exploration path (i.e., N ≤ N0), and F cannot exceed
F0 + N0 × R0. In the latter case, equality could be reached
when all isolated regions are connected to the same feeder. R
cannot exceed N0 ×R0. The equality could be reached when
all isolated regions are first connected to each other in a tree
structure. Likewise, K ≤ N0 ×K0.

If desired, the computation of the additive heuristic can be
performed incrementally, starting from the value of the parent
state. In such a case, the computational requirements are even
lower. Only the values that could possibly change have to be
re-computed. For example, if a feeder f is not affected by the
most recent transition, then all values µ(s), s ∈ F(f) can be
re-used from the values computed for the parent state. If the
topology of an isolated region r and all the µ values of the
switches on its frontier are the same as for the parent state,
then the entire value hL(r) can be re-used from the value
computed for the parent state.
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B. Other heuristics

In the empirical evaluation reported later we have ex-
perimented with two additional heuristics, hB and hS , as
alternatives to hA. The first is the trivial blind (null) heuristic
hB(σ) = 0. With hB the A* algorithm reduces to blind search.
The heuristic hS is defined as the number of remaining isolated
regions in the corresponding state: hS(σ) = |I(σ)|. That is,
hS optimistically assumes that each of the remaining isolated
regions can be resupplied with only one close action. The hS
heuristic is faster to compute (constant time) than hA. On
the other hand, it can easily be shown that, for any state σ,
hB(σ) ≤ hS(σ) ≤ hA(σ) ≤ h∗(σ), which suggests that hA is
more informative than hS . In particular, hS lacks the ability
to detect dead-ends in the search space. See Section VI for an
empirical comparison of these heuristics.

C. Successor generation

Search algorithms require a procedure to expand a state (i.e.,
to generate its successors). A successor state is obtained by
performing a transition in the parent state. For each state that
is being expanded, we consider two types of transitions. The
first type is CLOSE s, where s is a switch on the frontier of an
isolated region. Such transitions are useful to connect an entire
isolated region with only one switching action. Transitions of
the second type are two-action sequences (OPEN s1 CLOSE
s2), where s1 is a closed switch inside an isolated region r
and s2 is an open switch on the frontier of r. The cost of a
two-action transition is cost(s1) + cost(s2). Such transitions
are useful to connect only a part of an isolated region, which
is needed when the load and capacity constraints do not allow
resupplying an isolated region with only one switching action.

Grouping switching actions into OPEN-CLOSE pairs is a
common strategy reported in the literature (e.g., [18]). We
emphasize that this grouping is relevant only when searching
for a switching plan, not necessarily when executing the
plan. The grouping has no impact on the order in which the
switching actions will be executed. The execution order takes
into account conditions such as the fact that certain types of
switches cannot operate under load.

D. Partial order reduction

When modeled as a search problem, the supply restoration
problem features an additional challenge caused by the fact
that many orderings of the switching actions are equivalent.
This is a well known feature of the problem and work-around
solutions specific to various problem formulations have been
proposed [18], [17].

As a simple example, consider a network with three
isolated regions r1, r2 and r3. For each isolated region
ri there is an action ai that resupplies it. All sequences
a1a2a3, a1a3a2, . . . a3a2a1 are equivalent. Therefore, explor-
ing only one of them will do. In this example there are 3! = 6
such combinations. The number blows up as the number of
isolated regions or the number of actions that are relevant to
a given isolated region increase.

To limit the impact of the high number of action orderings,
our search strategy focuses on resupplying one isolated region

at a time. The search never generates transitions that are
relevant to a different isolated region. As soon as the current
isolated region is resupplied, a new isolated region among the
remaining ones is chosen to be next. This idea preserves both
the completeness and the (global) optimality of solutions. Its
only effect is that, among several equivalent paths to the same
state, some of the paths are pruned away.

In the example, assuming that the three regions are resup-
plied in the order r1, r2, r3, the algorithm would explore the
sequence a1a2a3 but would prune all other combinations.

More generally, two or more actions that are relevant to
two or more different isolated regions are explored in a fixed
order. Irrelevance of the ordering of actions for the same
isolated region is still not observed properly, but the number
of different but equivalent orderings of actions for one region
is much smaller than the number of orderings when actions
for different regions are considered.

E. Adaptation to Distributed Generation

Distributed generation is an important part of Smart Grids,
leading to more efficient and reliable distribution networks
[26], [27], [28]. Part of the increased reliability is due to
the possibility of supplying parts of the distribution network
from the local generation capacity even when parts of the
distribution network have no power. A main change caused by
distributed generation is the loss of radiality of the network: a
load may be simultaneously supplied both from the substation
and a small-scale local generator.

In fault situations it may be useful to operate part of
a distribution network in an islanding mode, in which the
distributed generators are the sole source of power. In this
setting the generator can simply be viewed as a distribution
substation, except that the loads connected to the generator
have to closely match the power being generated.

Our algorithms can be adapted to electricity networks with
distributed generation. The exact way of adapting the algo-
rithms depends on the assumptions made about how distributed
generation works in the model at hand.

For example, let us make the following assumptions. Each
feeder maintains a tree structure, but a feeder can contain
zero or more distributed generators, besides its connection to a
substation (circuit-breaker). Hence one load could be supplied
at the same time from several sources (at most one substation
and zero or more local generators). The output (which we call
capacity κ to be consistent with our terminology) of each local
generator is fixed and known.

We perform the following two modifications to the additive
heuristic hA, obtaining a new heuristic hD that works in the
distributed generation framework outlined earlier.

First, we need to take into account that the isolated region
at hand r might have local generators available. Therefore,
in the k-iteration process, we replace λ(r) with λ(r)− β(r).
The term β(r) is the sum of outputs (capacities) of all local
generators contained in r.

Second, in Equation 1, the presence of local generators in
the feeder at hand f might increase the maximal input µ of
a frontier switch s. In Equation 1, the residual capacity of
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each element e could increase because local generators in e’s
subtree could supply part of the combined load γ(e). Thus,
in the modified computation of µ(s), γ(e) is replaced with
γ(e)− β(e), where β(e) is the combined capacity of all local
generators in e’s subtree.

Assume, for simplicity, that local generators do not export
power outside a feeder f through any frontier switch s. (The
alternative case is equally easy but we skip it to keep the
discussion short.) It can be shown that µ(s) computed as
described earlier remains an upper bound on the maximal
power that a feeder f could provide through a frontier switch
s. In addition, the values k computed with the modified k-
iteration process remain a lower bound on the number of the
close actions needed to supply an isolated region r with all the
needed power that is not generated locally inside r. Therefore,
hD is an admissible heuristic.

Properties of the reconfiguration algorithm stated earlier
are preserved. For example, the algorithm will output a plan
that will supply all customers, unless no such plans exist.
Obviously, the availability of local generation increases the
likelihood that all customers could be supplied after reconfig-
uration.

VI. EXPERIMENTS

We have run experiments on two networks of different sizes.
The small network has 54 circuit-breakers, 139 switches and
138 lines. The large one contains 81 circuit-breakers, 210
switches and 207 lines. For illustration purposes, we show
the topology of about half of the small network in Figure 4.

The network topologies resemble distribution networks in
suburban areas in Australia. Starting from these topologies,
we have added the following parameters. The κ value of a
given circuit-breaker is randomly set to either 20 or 100. Each
switch has a randomly assigned but fixed cost from 1 to 5.
Each line has a capacity of 10. A busbar with a local load of
1 is connected to each line.

We consider multiple-fault scenarios, with a maximum of
20 faults per network. Multiple simultaneous faults in one
distribution feeder are unlikely, but possible for example
during storms. The experiments with up to 20 simultaneous
faults are just to demonstrate scalability to very complex fault
scenarios.

For each number of faults between 1 and 20, we generate
50 problem scenarios with the faulty lines selected randomly
in each case. As a result, we obtain 2,000 scenarios, 1,000
for each network. Some of the generated problem instances
turned out to be too difficult for blind search (very quickly
violating the memory bound), and we don’t include statistics
on those scenarios in the result diagrams.

Our program is implemented in Java 1.6. All experiments
are run on a Linux machine with a 2.4 GHz Intel Dual Core
processor. Each process is allocated 1.5 GB of memory.

We evaluate four versions of the algorithm described in
Section V. Three versions are based on A* and differ only in
the heuristic function that they employ. Each version uses hB ,
hS and hA respectively. All three algorithm versions produce
cost-optimal solutions. The main difference is in their speed

and memory consumption. The fourth program version that
we evaluated uses WA* algorithm with the hA heuristic and
W = 2.

Figures 5–7 summarize the results: runtimes, visited nodes
and plan costs averaged over instances that have a strong
solution. The actions to isolate faulty lines and to close the
circuit-breakers are not included in the reported costs.

The curves characterizing the average runtimes for different
numbers of faults are not very smooth. This can be explained
by the fact that the runtimes of combinatorial search algo-
rithms are usually heavy-tailed [29], which means that many
of the problem instances are much more difficult than the
instances on average.

Compared to A*, WA* is often much faster. Although with
W = 2 the plans could be up to twice as expensive as the
optimal ones, in practice, as indicated in Figure 7, the WA*
plans differ from optimal only in a small number of cases and
only slightly.

In the rest of this section, we focus on the performance
of the three heuristics in A*. All algorithm versions are rea-
sonably fast, indicating that computing cost-optimal switching
plans is feasible. The empirical data confirms the informedness
ranking of the three heuristics mentioned in Section V. The
best performing one is the additive heuristic, which is followed
by hS . Even for scenarios with more than 10 faults, A* with
hA needs less than two seconds in average to find a plan.
The time of computing hA could be further reduced by the
incremental computation described in Section V.

Recall that hS optimistically assumes that every isolated
region can be resupplied with one close action, whereas hA
computes a more sophisticated lower bound. Hence, the fact
that hA is more informative than hS indicates that in some
cases one single close action of minimal cost is not enough to
resupply an isolated region and that in such cases hA provides
a more accurate estimation of the costs.

As suggested, for example, in Figure 6, the larger network
does not significantly increase the difficulty of the problem.
This can be explained by the fact that the algorithm searches
for level 1 plans only: the complexity is exponential in the
sum of the sizes of initially isolated regions, which can be
arbitrarily smaller than the network size. The only switches
that would possibly need to be operated while searching for a
level 1 plan are those in A = ∪r∈I(σ0)S(r), and possibly
fewer than |A| circuit breakers. Circuit breaker operations
would be needed in those cases when switches in A can’t
be operated under load. Since each switch has two possible
states, an upper bound on the size of the state space that needs
to be explored is in the order of 2|A|. This can be much smaller
than 2|M|, the size of the entire state space, whereM contains
all switches in the network.

The data in the three figures indicate that instances tend
to grow in difficulty as the number of faulty lines increases
(the zigzagging effect comes from the noise in the randomly
generated fault scenarios). The growth in difficulty is as
expected, being consistent with the brief complexity analysis
outlined earlier. As long as the faulty lines remain fairly sparse
in the network, increasing their number tends to increase the
number of isolated regions (in the initial state) that need to
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Fig. 4. The topology of part of the small network. Larger boxes are circuit-breakers and smaller boxes are switches. Grey boxes represent open switches.
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Fig. 5. Average running time for the small network (left) and the large network (right).
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Fig. 7. Average plan cost for the small network (left) and the large network (right).

be re-supplied with power. It should not be concluded that,
if the number of faults were further increased, the problem
difficulty would always keep increasing. An extreme increase
in the number of faulty lines will decrease the number of
isolated regions that can be resupplied, which eventually will
make the multi-fault problems very easy.

VII. CONCLUSION

The importance of reconfiguration seems to be even stronger
in the next generation of power grids. We have presented a
class of algorithms for finding reconfiguration plans that have
a guaranteed minimal cost, and provided experimental data
to illustrate its scalability to solve large multi-fault supply
restoration problems for distribution networks of realistic
structure and size. The work is based on systematic informed
search algorithms in the A* family. We have also presented
variants of these algorithms that find plans that are guaranteed
to be only a constant factor more expensive than the optimal
ones, and shown that in practice optimal or almost optimal
solutions are found with a substantially reduced search effort.

The results of this work may seem to contradict the fact
that the reconfiguration problem with capacity constraints is
NP-complete [30] and that known algorithms consequently
have an exponential time worst-case complexity. However, the
exponential worst-cases might show up only with unrealisti-
cally complex network topologies and extremely strict capacity
constraints.

Topics for future research include finding characterizations
of distribution network structure which could guarantee the
efficient solvability of reconfiguration problems, and the de-
velopment of algorithms that cover more of the constraints
that are likely to arise during reconfiguration, including the
requirement to resupply priority customers quickly.

Another future research direction arises from the combina-
tion of remotely and manually controlled switches. The present
work addresses the case of remotely controllable switches, in
which all the switches can be operated simultaneously and
almost instantaneously, and the actual total cost is the sum of
the costs of individual switching operations. In the presence

of manually controlled switches, the aggregation of individual
costs is not as simple. In this case, the total duration of the
reconfiguration plan is likely to have cost implications (for
example in terms of the duration of the outage). The operation
of the manually controllable switches can be carried by one or
more field crews, and complex optimization may be required,
involving route planning for the crews, decisions about how
many crews dispatch, and how to assign the tasks to the crews.

For the Smart Grid scenario, when reconfiguration should
take place quickly and fully automatically, the management
of uncertainty has to be automated and cannot be delegated
to control room operators. Specifically, the reconfiguration
procedure should observe uncertainty about fault locations,
and generate reconfiguration plans with the highest expected
value, in terms of the likelihood of success. Also, the reconfig-
uration plans should be robust in the sense of being unlikely
to disrupt power supply to priority customers, even in the case
of incorrect initial assumptions about the fault location.
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