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Abstract

We present a general framework for studying heuristics for
planning in the belief space. Earlier work has focused on giv-
ing implementations of heuristics that work well on bench-
marks, without studying them at a more analytical level. Ex-
isting heuristics have evaluated belief states in terms of their
cardinality or have used distance heuristics directly based on
the distances in the underlying state space. Neither of these
types of heuristics is very widely applicable: often goal be-
lief state is not approached through a sequence of belief states
with a decreasing cardinality, and distances in the state space
ignore the main implications of partial observability.
To remedy these problems we present a family of admissible,
increasingly accurate distance heuristics for planning in the
belief space, parameterized by an integern. We show that
the family of heuristics is theoretically robust: it includes the
simplest heuristic based on the state space as a special case
and as a limit the exact distances in the belief space.

Introduction
Planning under partial observability is one of the most diffi-
cult planning problems because algorithms for finding plans
have to – at least implicitly – address the incompleteness of
the knowledge about the environment in which the plan ex-
ecution will take place. The incompleteness of knowledge
leads to the notion of belief states: depending on the type
planning, belief states are either probability distributions on
the state space, or, in the non-probabilistic versions of the
partially observable planning problem, sets of states. In ei-
ther case, the exponentially bigger size of the set of belief
states – the belief space – in comparison to the state space is
a major obstacle in achieving efficient planning.

Following the lead in classical planning (Bonet & Geffner
2001), also restricted types of planning in the belief space,
most notably the planning problem without any observabil-
ity at all (sometimes known as conformant planning), has
also been represented as a heuristic search problem (Bonet
& Geffner 2000). However, the implementation of heuristic
search in the belief space is more complex than in classical
planning because of the difficulty of deriving good heuris-
tics. First works on the topic have used distances in the state
space (Bonet & Geffner 2000) and cardinalities of the belief
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states (Bertoli, Cimatti, & Roveri 2001). On some types of
problems these heuristics work well, but not on all, and the
two proposed approaches have orthogonal strengths.

Many problems cannot be solved by blindly taking actions
that reduce the cardinality of the current belief state: the
cardinality of the belief state may stay the same or increase
during plan execution, and hence the decrease in cardinality
is not characteristic to belief space planning in general.

Similarly, distances in the state space completely ignore
the most distinctive aspect of planning with partial observ-
ability: the same action must be used in two states if the
states are not observationally distinguishable. A given (opti-
mal) plan for an unobservable problem may increase the ac-
tual current state-space distance to the goal states (on a given
execution) when the distance in the belief-space monoton-
ically decreases, and vice versa. Hence, the state space
distances may yield wildly misleading estimates of the dis-
tances in the corresponding belief space.

To achieve more efficient planning it is necessary to de-
velop belief space heuristics that combine the strengths of
existing heuristics based on cardinalities and distances in the
state space. In this work we present such a family of heuris-
tics, parameterized by a natural numbern. The accuracy of
the distance estimates improves asn grows. As the special
casen = 1 we have a heuristic based on distances in the
state space, similar to ones used in earlier work. When the
cardinality of the state space equalsn, the distance estimates
equal the actual distances in the belief space.

Planning in the Belief Space
Let S be a set of states. A planning problem〈I,O,G〉 with-
out observability is abstractly defined in terms of

1. an initial belief stateI ⊆ S,

2. a set of operatorsO, each operatoro ∈ O associated with
a transition relationRo ⊆ S × S describing the possi-
ble transitions wheno is applied (the operators are non-
deterministic and hence the transition relations are not re-
stricted to partial functions), and

3. a setG of goal states (the goal belief state).

In the special case of deterministic (classical) planning the
setI consists of one state and all the relationsRo, o ∈ O
are partial functions. The objective in deterministic plan-



ning is to find a sequenceo1, . . . , on of operators so that
s0Ro1s1Ro2s2 · · · sn−1Rnsn whereI = {s0} andsn ∈ G.

The state space is viewed as a graph〈S, R1, R2, . . . , Rn〉
with nodess ∈ S and setsRi of directed edges labeled with
operatorsoi ∈ O. Classical planning is finding a path from
the initial state to one of the goal states.

In planning without observability (conformant planning),
the objective is similarly to find a sequence of operators
reaching a goal state, but because of the unknown initial
state (equivalently, an initial state nondeterministically cho-
sen fromI) and the nondeterministic transitions, the inter-
mediate stages during plan execution are not states, but sets
of states, describing the sets of possible states at every stage
of plan execution.

Belief states in the belief space are sets of states, that is,
the belief space is the powerset of the state space. An oper-
atoro maps a belief stateB to the belief state

{s′ ∈ S|s ∈ B, sRos
′}

if1 for everys ∈ B there iss′ ∈ S such thatsRos
′.

Similarly a labeled graph〈2S , Rb
1, R

b
2, . . . , R

b
n〉 can be

constructed for the belief space. Here the set of directed
edgesRb

i are defined so that belief stateB is related toB′ by
Rb

i (that isBRb
iB

′) if B is mapped toB′ by oi. Like in clas-
sical planning, these relationsRb

i are partial functions, and
similarly to classical planning, planning without observabil-
ity (conformant planning) is finding a path from the initial
belief stateI to a belief stateG′ such thatG′ ⊆ G.

Algorithms
Planning in the belief space can be solved like a state-space
search problem: start from the initial belief state and repeat-
edly follow the directed edges in the belief space to reach
new belief states, until a belief state that is a subset of the
goal states is reached.

When a heuristic search algorithm is used for avoiding the
enumeration of all the belief states, then it is important to use
some informative heuristic for guiding the search.

The most obvious heuristic would be an estimate for the
distance from the current belief stateB to the set of goal
statesG. In the next section we discuss some admissible
heuristics that are derivedfrom distances in the state space
that underlies the belief space. These are the most obvious
heuristics one could use. The rest of the paper is dedicated
to investigating more informative heuristics that are not di-
rectly derived from the distances in the state space.

Distance Heuristics from the State Space
Research on conformant planning so far has concentrated on
distance heuristics derived from the distances of individual
states in the state space. The distance of a belief state is
for example the maximum length of a shortest path from a
constituent state to a goal state.

1This is the applicability condition, corresponding to the re-
quirement that the preconditions of the operator is satisfied in every
possible state of the belief state (precondition is part of the com-
monly used syntactic definitions of operators.)

Bonet and Geffner (2000) have used a related distance
measure, the optimal expected number of steps of reaching
the goal in the corresponding probabilistic problem. Bryce
and Kambhampati (2003) have considered efficient approx-
imations of state space distances.

The most obvious distance heuristics are based on the
weak and strong distances in the state space. The weak dis-
tances of states are based on the following inductive defini-
tion. SetsDi consist of those states from which a goal state
is reachable ini steps or less.

D0 = G
Di+1 = Di ∪ {s ∈ S|o ∈ O, s′ ∈ Di, sRos

′}

A states hasweak distanced ≥ 1 if s ∈ Dd\Dd−1 and dis-
tance 0 ifs ∈ G. This means that it is possible to reach one
of the goal states starting froms by a sequence ofd oper-
ators if the nondeterministic alternatives play out favorably.
Of course, nondeterministic actions may come out unfavor-
ably and a higher number of actions may be needed, or the
goal may even become unreachable, but if it is possible that
the goals are reached ind steps then the weak distance isd.

Strong distances are based on a slightly different inductive
definition. NowDi consists of those states for which there
is a guarantee of reaching a goal state ini steps or less.

D0 = G
Di+1 = Di ∪ {s ∈ S|o ∈ O, s′ ∈ Di, sRos

′,
sRos

′′ impliess′′ ∈ Di for all s′′}

A states hasstrong distanced ≥ 1 if s ∈ Dd\Dd−1 and
strong distance 0 ifs ∈ G.

Next we derive distance heuristics for the belief space
based on state space distances. Both weak and strong dis-
tances yield an admissible distance heuristic for belief states,
but strong distances are (not always properly) higher than
weak distances and therefore a more accurate estimate for
plan length.

Definition 1 (State space distance)The state space dis-
tanceof a belief stateB is d ≥ 1 whenB ⊆ Dd and
B 6⊆ Dd−1, and it is0 whenB ⊆ D0 = G.

Even though computing the exact distances for a typical
succinct representation of transition systems, like STRIPS
operators, is PSPACE-hard, the much higher complexity of
planning problems with partial observability still often justi-
fies it: this computation would in many cases be an inexpen-
sive preprocessing step, preceding the much more expensive
solution of the partially observable planning problem. Oth-
erwise cheaper approximations can be used.

n-Distances
The essence of planning without observability is that the
same sequence of actions has to lead to a goal state for ev-
ery state in the belief state. The distance heuristics from the
strong distances in the state space may assign distance 1 to
both states1 and states2, but the distance from{s1, s2}may
be anywhere between 1 and infinite. The inaccuracy in esti-
mating the distance of{s1, s2} based on the distances ofs1



ands2 is that the distances ofs1 ands2 in the state space
may be along paths that have nothing to do with the path
for {s1, s2} in the belief space. That is, the actions on these
three paths may be completely different.

This leads to a powerful idea. Instead of estimating the
distance ofB in terms of distances of statess ∈ B in the
state spaceS, let us estimate it in terms of distances ofn-
tuples of states in the product state spaceSn, in which there
is a transition from〈s1, . . . , sn〉 to 〈s′1, . . . , s′n〉 if and only
if there is an operatoro that allows a transition fromsi to
s′i for every i ∈ {1, . . . , n}. Here the important point is
that the transition between the tuples is by using the same
operator for every component state. This corresponds to the
necessity of using the same operator for every state, because
observations cannot distinguish between them.

This leads to a generalization of strong distances. We de-
fine the distances ofn-tuples of states as follows.

D0 = Gn

Di+1 = Di ∪ {σ ∈ Sn|o ∈ O, σ′ ∈ Di, σRn
o σ′,

σRn
o σ′′ impliesσ′′ ∈ Di for all σ′′}

HereRn
o is defined by

〈s1, . . . , sn〉Rn
o 〈s′1, . . . , s′n〉 if siRos

′
i for all i ∈ {1, . . . , n}.

Now we can define then-distance of a belief state as follows.

Definition 2 (n-distance) Belief state B has n-distance
d = 0 if for all {s1, . . . , sn} ⊆ B, 〈s1, . . . , sn〉 ∈ D0 (this is
equivalent toB ⊆ G.) Belief stateB hasn-distanced ≥ 1
if for all {s1, . . . , sn} ⊆ B, 〈s1, . . . , sn〉 ∈ Dd and for some
{s1, . . . , sn} ⊆ B, 〈s1, . . . , sn〉 6∈ Dd−1. If the distanced
is not any natural number, thend = ∞.

So, we look at all then-element subsets ofB, see what
their distance to goals is in the product state spaceSn, and
take the maximum of those distances. Notice that when we
pick the elementss1, . . . , sn from B, we do not and cannot
assume that the elementss1, . . . , sn are distinct, for example
becauseB may have less thann states. Of course, the defini-
tion assumes thatB has at least one state. The 1-distance of
a belief state coincides with the state space distance defined
in the previous section.

The motivation behindn-distances is that computing the
actual distance of belief states is very expensive (as complex
as the planning problem itself) but we can use an informative
notion of distances for “small” belief states of sizen.

Next we investigate the properties ofn-distances. The
first result shows thatn-distances are at least as good an es-
timate asm-distances whenn > m. This result is based on a
technical lemma that shows thatm-tuples from the definition
of m-distances are included in then-tuples of the definition
of n-distances.

Lemma 3 (Embedding) Let n > m and letD0, D1, . . . be
the sets in the definition ofm-distances, andD′

0, D
′
1, . . . the

sets in the definition ofn-distances.
Then for all i ≥ 0, all belief statesB and all

{s1, . . . , sm} ⊆ B, if 〈s1, . . . , sm, s′m+1, . . . , s
′
n〉 ∈ D′

i
where s′k = sm for all k ∈ {m + 1, . . . , n}, then
〈s1, . . . , sm〉 ∈ Di.

Proof: By induction oni. Basei = 0: If {s1, . . . , sm} ⊆
B and 〈s1, . . . , sm, sm, . . . , sm〉 ∈ D′

0 (state sm is re-
peated so that the number of components in the tuple is
n), then 〈s1, . . . , sm, sm, . . . , sm〉 ∈ Gn. Consequently,
〈s1, . . . , sm〉 ∈ D0 = Gm.

Inductive case i ≥ 1: We show that if
〈s1, . . . , sm, sm, . . . , sm〉 ∈ D′

i, then there is an oper-
ator o ∈ O such that for any statess′1, . . . , s

′
m such that

siRos
′
i for all i ∈ {1, . . . ,m}, 〈s′1, . . . , s′m〉 ∈ Di−1, and

hence〈s1, . . . , sm〉 ∈ Di.
So assume〈s1, . . . , sm, sm, . . . , sm〉 ∈ D′

i. Hence there
is an operatoro ∈ O such that for alls′1, . . . , s

′
n such

that siRos
′
i for all i ∈ {1, . . . ,m} and smRos

′
j for all

j ∈ {m + 1, . . . , k}, the n-tuple 〈s′1, . . . , s′n〉 is in D′
i−1.

Now 〈s′1, . . . , s′m, s′m, . . . , s′m〉 ∈ D′
i−1 because this tuple is

one of those reachable from〈s1, . . . , sm, sm . . . , sm〉, and
hence by the induction hypothesis〈s′1, . . . , s′m〉 ∈ Di−1.
Because this holds for alls′i reachable byRo from the cor-
respondingsi, we have〈s1, . . . , sm〉 ∈ Di. �

The embedding ofm-distances inn-distances as provided
by the lemma easily yields the result thatn-distances are
more accurate thanm-distances whenn > m.

Theorem 4 Let dn be then-distance for a belief stateB
anddm them-distance forB. If n > m, thendn ≥ dm.

Proof: So assume that them-distance of B is dm.
This implies that there is{s1, . . . , sm} ⊆ B such that
〈s1, . . . , sm〉 6∈ Ddm−1. Let σ = 〈s1, . . . , sm, sm, . . . , sm〉
where sm is repeatedn − m + 1 times. By Lemma 3
σ 6∈ D′

dm−1. Hence there is{s1, . . . , sm, sm, . . . , sm〉 ⊆ B
such that〈s1, . . . , sm, sm, . . . , sm〉 6∈ D′

dm
. Hence then-

distancedn of B is greater than or equal todm. �

So, 2-distances are a better estimate for belief states than
the estimate given by state space distances, and 3-distances
are a better estimate than 2-distances, and so on.

For the last result we need another lemma, which we give
without a proof. The lemma states that the components of
the tuples in the setsDi may be reordered and replaced by
existing components.

Lemma 5 Let D0, D1, . . . , be the sets in the definition of
n-distances. Then if〈s1, . . . , s, s

′, . . . , sk〉 is in Di, then so
is 〈s1, . . . , s

′, s, . . . , sk〉, and if〈s1, s2, s3, . . . , sk〉 is in Di,
then so is〈s1, s1, s3, . . . , sk〉.

Theorem 6 Let the belief space be2S , where the cardinality
of the state space isn = |S|. Then then-distance ofB
equals the distance ofB in the belief space.

Proof: Omitted because of lack of space. �

In summary, the accuracy of then-distances grows asn
grows, and asymptotically whenn equals the number of
states it is perfectly accurate.

In addition to including state space distances as a special
case, the family ofn-distances also takes into account the
cardinalities of belief states, although only in a restricted



manner as determined by the magnitude ofn. Consider the
belief stateB = {s1, s2}. Its 2-distance is determined by
the membership of the tuplesσ1 = 〈s1, s2〉 (and symmetri-
cally 〈s2, s1〉), σ2 = 〈s1, s1〉, andσ3 = 〈s2, s2〉 in the sets
Di. The distance ofσ1 is at least as high as that ofσ2 and
σ3, because any sequence of actions leading to goals that
is applicable for{s1, s2} is also applicable fors1 alone and
for s2 alone, and there might be shorter action sequences ap-
plicable fors1 ands2 but not for{s1, s2}. Therefore, any
reduction in the size of a belief state, like from{s1, s2} to
{s1} would appropriately improve then-distance estimate.

Accuracy of the Heuristics
Preceding results show that the accuracy ofn-distances in-
creases asn grows, reaching perfect accuracy whenn equals
the cardinality of the state space. Can we demonstrate ad-
vantages ofn-distances on concrete planning problems? We
shed some light on this issue next, but the reader should note
that the benchmarks used by us and others are rather simple
and unlikely to reflect properties of more challenging prob-
lems. Consequently, this section just illustrates the impact
the improved heuristics can have on different problems.

We have implemented a planner that does heuristic search
in the belief space, and three heuristics for guiding the search
algorithms implemented in this planner: the 1-distances, the
2-distances, and the cardinality of belief states. The first
two heuristics are admissible, and can be used in connection
with optimal heuristic search algorithms like A∗. The third
heuristic, size of the belief states, does not directly yield an
admissible heuristic, and we use it only in connection with a
search algorithm that does not rely on admissibility.

The planner is implemented in C and represents belief
states as BDDs with the CUDD system from Colorado Uni-
versity. CUDD provides functions for computing the cardi-
nality of a belief state. Our current implementation does not
supportn-distances forn other than 1 and 2.

The search algorithms implemented in our planner in-
clude the optimal heuristic search algorithm A∗, the subop-
timal family of algorithms WA∗2, and suboptimal best-first
search which first expands those nodes that have the lowest
estimated remaining distance to the goal states.

The main topic to be investigated is the relative accuracy
of n-distances, and as a secondary topic we briefly evalu-
ate the effectiveness of different types of search algorithms
and heuristics. We use the following benchmarks. Regret-
tably there are few meaningful benchmarks; all the interest-
ing ones are for the more general problem of partially ob-
servable planning.

• Bonet and Geffner (2000) proposed one of the most inter-
esting benchmarks for conformant planning so far, sorting
networks (Knuth 1998). A sorting network consists of an
ordered (or a partially ordered) set of gates acting on a
number of input lines. Each gate combines a comparator
and a swapper: if first input is greater than the second,

2We parameterize WA∗ with W = 5, giving a 5 times higher
value to the estimated remaining distance than to the distance so
far, yielding solutions having cost at most 5 times the optimal.

then swap the values. The goal is to sort the input se-
quence. The sorting network always has to perform the
same operations irrespective of the input, and hence ex-
actly corresponds to planning without observability.
Our size parameter is the number of inputs.

• In the empty room benchmark a robot without any sensors
moves in a room to north, south, east and west and its
goal is to get to the middle of the room. This is possible
by going to north or south and then west or east until the
robot knows that it is in one of the corners. Then it is easy
to go to the goal position. The robot does not know its
initial location.
Sizen characterizes room size2n × 2n.

• Our blocks world benchmark is the standard blocks world,
but with several initial states and modified to be solvable
without observability even when the initial state is not
known. Operators are always applicable, but nothing hap-
pens if the relevant blocks are not accessible. The initial
belief state consists of all the possible configurations of
then blocks, and the goal is to build a stack consisting of
all the blocks in a fixed order.

• The ring of rooms benchmark involves a round building
with a cycle ofn rooms with a window in each that can be
closed and locked. Initially the state of the windows and
the location of the robot is unknown. The robot can move
to the next room either in clockwise or counterclockwise
direction, and then close and lock the windows. Locking
is possible only if the window is closed. Locking an al-
ready locked window and closing an already closed win-
dow does not have any effect.
The size parameter is the number of rooms.

There are other benchmarks considered in the literature,
but their flavor is close to some of the above, and many can
be easily reformulated as planning with full observability.

Table 1 makes a comparison on the accuracy of 1-
distances and 2-distances on a number of problem instances.
For each heuristic we first give the distance estimate for the
initial belief state, followed by the percentage of the actual
distance. The actual distance (= length of the shortest plan)
was determined by A∗ and is given in the last column.

As expected, on most of the problems 2-distances are
strictly better estimates than 1-distances, and surprisingly,
on one of the problems, the empty room navigation prob-
lem, the 2-distances equal the lengths of the shortest plans.

For the ring of room problems 1-distances and 2-distances
are the same, and coincide with the actual shortest plan
length. This is because of the simple structure of the prob-
lem and its belief space. It seems that 2-distances would also
not provide an advantage over 1-distances on many other
problems in which there are no dependencies between state
variables with unknown values.

The sorting network problem is the most difficult of the
benchmarks in terms of the relation between difficulty and
number of state variables. Every initial state (combination of
input values) in this benchmark can be solved by a sorting
network with a small number of gates (more preciselybn

2 c),



1-distance 2-distance exact
len % len % len

sort02 1 1.00 1 1.00 1
sort03 1 0.33 2 0.67 3
sort04 2 0.40 3 0.60 5
sort05 2 0.22 3 0.33 9
sort06 3 0.25 4 0.33 12
sort07 3 0.19 5 0.31 16
sort08 4 0.16 6 0.32 19
ring03 8 1.00 8 1.00 8
ring04 11 1.00 11 1.00 11
ring05 14 1.00 14 1.00 14
ring06 17 1.00 17 1.00 17
ring07 20 1.00 20 1.00 20
BW02 2 0.67 3 1.00 3
BW03 4 0.57 5 0.71 7
BW04 6 0.46 8 0.62 13
BW05 7 0.41 9 0.53 17
emptyroom01 2 1.00 2 1.00 2
emptyroom02 4 0.50 8 1.00 8
emptyroom03 8 0.40 20 1.00 20
emptyroom04 16 0.36 44 1.00 44
emptyroom05 32 0.35 92 1.00 92

Table 1: Accuracy of 1-distances and 2-distances on a num-
ber of problem instances

which makes the 1-distances small. Increasingn monotoni-
cally increasesn-distances, but the increase is slow because
for a small number of input combinations the smallest net-
work sorting them all is still rather small, and as the number
of input value combinations is exponential in the number of
inputs, only a tiny fraction of all combinations is covered.

Table 2 gives runtimes on all combinations of search al-
gorithm and heuristic. We only report the time spent in
the search algorithm, ignoring a preprocessing phase during
which BDDs representing 1-distances and 2-distances are
computed. Computing 2-distances is more expensive than
computing 1-distances because there are twice as many vari-
ables in the BDDs and the efficiency of BDDs decreases as
BDDs grow. The higher accuracy of 2-distances is often re-
flected in the runtimes.

On the empty room problems, performance of A∗ and
1-distances quickly deteriorates as room size grows, while
with 2-distances A∗ immediately constructs optimal plans
even for bigger rooms. On sorting networks and WA∗ 2-
distances lead to a better performance because of its advan-
tage over 1-distances in accuracy, but finding bigger optimal
networks is still very much out of reach.

On all of the problems, best-first search is the fastest
to find a plan, but plans were much longer on the empty
room and blocks world problems, and slightly worse on
sorting networks. For bigger sorting networks the cardinal-
ity heuristic combined with best-first is the best combina-
tion, as runtimes with the other heuristics and with A∗ and
WA∗ grow much faster. We believe that our collection of
benchmarks is too small to say conclusively anything gen-
eral about the relative merits of the heuristics.

Interestingly, our planner with best-first search and the

cardinality heuristic produces optimal sorting networks up
to size 8 (Bonet and Geffner (2000) report producing net-
works until size 6 with an optimal algorithm), and for big-
ger networks the difference to known best networks is first
relatively small, but later grows; see Table 3.

Related Work
Bonet and Geffner (2000) were one of the first to apply
heuristic state-space search to planning in the belief space.
They used a variant of the state space distance heuristic con-
sidered by us, with the difference that they were addressing
probabilistic problems and considered expected distances of
states under the optimal probabilistic plan, instead of the
non-probabilistic weak or strong distances.

Bryce and Kambhampati (2003) compute distances with
Graphplan’s (Blum & Furst 1997) planning graphs, and rec-
ognize that the smallest of the weak distances of states in a
belief state – as is trivially obtained from planning graphs –
is not very informative, and propose improvements based on
multiple planning graphs: for a formulaχ1 ∨ χ2 ∨ · · · ∨ χn

describing a belief state, compute the estimate for eachχi

separately. Then an admissible estimate for the whole be-
lief state is bounded from above bymaxn

i=1 mins∈σ(χi) δ(s)
whereσ(χi) is the set of states described byχi, andδ(s) is
the distance from states to a goal state. This is below the
state space distances (1-distances) because minimization is
used, not maximization. It may be difficult to do distance
maximization with planning graphs as they do not represent
most dependencies between state variables.

Smith and Weld’s (1998) multiple planning graphs and es-
pecially their induced mutexes are related to ourn-distances.
They compute a kind of approximation of ourn-distances,
but as this computation is based on distances of state vari-
able values as in the work by Bryce and Kambhampati, the
approximation is not very good. With the multiple planning
graphs there do not appear to be useful ways of controlling
the accuracy parametern, and Smith and Weld then essen-
tially considern that equals the number of initial states for
deterministic problems.

Haslum and Geffner (2000) have defined a family of
increasingly accurate heuristics for classical deterministic
planning. Their accuracy parametern is the number of state
variables analogously to our parametern of states. However,
they give approximations of distances in the state space (our
1-distances), not in the belief space, and many of the phe-
nomena important for conditional planning, like nondeter-
minism, do not show up in their framework.

Conclusions and Future Work
In this paper, we have presented a family of distance heuris-
tics for planning in the belief space, and shown that this
family behaves in a robust way, generalizes distance esti-
mates based on distances in the state space, and asymptoti-
cally yields perfectly accurate estimates. Our experimental
study on a number of benchmark problems indicates that on
all problems considered, the estimates are a proper improve-
ment over estimates based on state space distances, except
when both are perfectly accurate.



instance A∗ WA∗ best first
1-distance 2-distance 1-distance 2-distance 1-distance 2-distance cardinality
time len time len time len time len time len time len time len

sort02 0.00 1 0.00 1 0.00 1 0.00 1 0.00 1 0.00 1 0.00 1
sort03 0.00 3 0.00 3 0.00 3 0.00 3 0.00 3 0.00 3 0.00 3
sort04 0.00 5 0.01 5 0.00 5 0.00 5 0.00 6 0.00 6 0.00 5
sort05 0.12 9 0.15 9 0.13 9 0.07 9 0.00 10 0.01 10 0.00 9
sort06 139.41 12 154.64 12 251.87 12 25.81 12 0.01 15 0.01 15 0.00 12
sort07 > 2h > 2h > 2h > 2h 0.01 21 0.01 20 0.01 16
sort08 > 2h > 2h > 2h > 2h 0.02 28 0.05 28 0.02 19
ring03 0.01 8 0.01 8 0.00 8 0.00 8 0.00 8 0.00 8 0.01 8
ring04 0.00 11 0.01 11 0.00 11 0.00 11 0.00 11 0.01 11 0.00 11
ring05 0.01 14 0.03 14 0.01 14 0.04 14 0.01 14 0.03 14 0.01 14
ring06 0.03 17 0.12 17 0.03 17 0.14 17 0.03 17 0.14 17 0.03 17
BW02 0.00 3 0.00 3 0.00 3 0.00 3 0.00 3 0.00 3 0.00 3
BW03 0.01 7 0.00 7 0.00 7 0.01 7 0.00 7 0.01 7 0.00 7
BW04 0.71 13 0.93 13 0.04 13 0.06 14 0.02 14 0.04 14 0.03 14
BW05 180.47 17 307.62 17 1.26 17 2.87 17 0.40 22 1.41 21 0.36 34
emptyroom01 0.00 2 0.00 2 0.00 2 0.00 2 0.00 2 0.00 2 0.00 4
emptyroom02 0.00 8 0.00 8 0.00 8 0.00 8 0.00 12 0.00 8 0.00 12
emptyroom03 0.16 20 0.01 20 0.03 24 0.00 20 0.00 50 0.00 20 0.00 36
emptyroom04 37.28 44 0.07 44 10.59 52 0.06 44 0.09 222 0.06 44 0.01 106
emptyroom05 > 2h 0.92 92 > 2h 0.89 92 2.53 950 0.89 92 0.03 342

Table 2: Runtimes and plan sizes of a number of problem instances

inputs 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
gates (best known) 1 3 5 9 12 16 19 25 29 35 39 45 51 56 60
gates (our planner) 1 3 5 9 12 16 19 26 31 39 46 56 64 74 81

Table 3: Sizes of sorting networks found by best-first search and cardinality heuristic. Networks up to 8 inputs are optimal.
From 9 on optimal network sizes are not known. Total runtime for 16 inputs is 5.81 seconds on a 800 MHz Pentium.

To make the use of 2-distances feasible on bigger problem
instances a further investment in implementation techniques
is needed. Most direct approach would be to give up exact
computation of 2-distances. First, one could use generic ap-
proximation techniques for making BDDs smaller: compute
a BDD of small size given upper and lower bounds for the
Boolean function. Second, 2-distances can be approximated
by abstracting half of the state variables away: for〈s1, s2〉
ignore the even ones fors1 and the odd ones fors2.

So far we presented heuristics for the unobservable plan-
ning, but of course the main interest is in conditional plan-
ning with partial observability. Then-distances are not ad-
missible for partially observable planning in general: in-
creased observability decreases belief state distances. This
will be addressed in future research.
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