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Motivation

@ Almost all of the standard benchmarks are solvable Motivation
by simple polynomial-time problem-specific
algorithms.

o Narrow class, not representative (in general;
applications)!
o Say little about performance of planners in general!

@ How were difficult instances obtained: increase the
number of packages, airplanes, ... (> 2000 state
variables, > 40000 operators, )

@ Actually, 20 state variables and 40 operators is a
challenge to many planners!!!




How to get challenging benchmarks?

Analogy: SAT benchmarks Motivation

@ Notoriously difficult to come by just by inventing
some.

@ Prove that for any algorithm the problem is difficult
(pigeon-hole formulas for DPLL/resolution!): not very
interesting...

© Go to Intel and ask for problems that resist solution.
(Which company is the Intel of planning?)

© Experiment with the set of all instances, identifying
problem parameters that make planning difficult.



Planning phase transition
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How to solve the easiest problems

Bylander 1996: Bylander 1996:
insolubility by solvable by a

a simple syntactic simple hill-climbing]
test algorithm

Phase transition




Problem instances

Characterized by the following parameters.
@ number n of state variables (size of state space)
© number of operators

© number of effect literals in operators (our
experiments: 2)

© number of precondition literals (our experiments: 3)
© number of goal literals (our experiments: n)

Formalization

© number of goal literals with value differing from the
initial value (our experiments: n).



Further restrictions

@ Model B (Bylander 1996): no restrictions.

@ Model C: each literal occurs as effect at least once.
Otherwise very likely some goal literals cannot be
made true: many trivially insoluble instances.

Formalization

@ Model A: each literal occurs as effect about the same
number of times.
Model C does not fully fix the problem in Model B, so
we go a bit further in Model A.



Experimental set-up

@ Fix other parameters, and vary the number of
operators.
— What happens to difficulty when the number of Experiments
arcs (~ operators) in the transition graph is varied?
@ Number of instances for given parameter values is

astronomic, so we sample the space of all problem
instances.

@ Evaluate runtimes and plan lengths of different
planners.



Approach: satisfiability planning

@ First developed by Kautz and Selman (1992, 1996)

@ Translate planning into formulae, find plans with a
SAT solver.

@ The commercially most successful planning
technology (outside planning!!!): bounded
model-checking since 1999 a leading technology for
model-checking, mega-USD business

@ Has not been considered competitive on current
benchmarks. Main reason: “faster” planners give no
quality guarantees.

SAT Planning



Planner: SP

@ Our own (here: SP, for Satisfiability Planning)

@ Improved problem encodings: formula size often < %
of BLACKBOX and runtimes 35, 155, 1055 ON big
problems. —

@ With novel evaluation strategies very good on
standard benchmarks without any
benchmark-specific tricks!! See ECAI'04 paper.

@ BLACKBOX about as good as SP on the small
problem instances we discuss in this talk.



Approach: heuristic state-space search

@ Heuristic search in the state space + distance
heuristics

@ Reference: Bonet and Geffner (2001)
@ Favored by the planning competition community.



Planners: HSP an FF

@ HSP (Bonet and Geffner, 2001)
@ FF (Hoffmann and Nebel, 2001)

e additional techniques inspired by the standard
benchmarks
e very good on standard benchmarks



LPG: planning graphs + heuristic search

@ Developed by Gerevini and Serina (1999-)

@ Basic data structure: planning graph from Graphplan
(Blum & Furst, 1995)

@ Local search with incomplete plans (~ planning
graphs)

@ Advantage over earlier planning graph approaches:
length increased dynamically during search
(optimality given up!)



First test series

Model A (Results on Model C are similar.)

@ 20 state variables, from 36 to 120 operators at
interval ~ 6

@ About 500 soluble instance for each operators /
variable ratio (about 8000 soluble instances out of
100000, identified by a BDD-based breadth-first
search planner)

@ Measure runtimes and plan lengths (timeout 10
minutes)

1st test series



Runtimes: SP

Model A: Distribution of runtimes on SP
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Runtimes

runtime in seconds
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Model A: Distribution of runtimes on LPG
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Runtimes: FF

Model A: Distribution of runtimes on FF
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HSP
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Plan lengths: SP

Model A: Distribution of plan lengths on SP
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Plan lengths: LPG

Model A: Distribution of plan lengths on LPG
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Plan lengths: FF

Model A: Distribution of plan lengths on FF
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Further tests: scalability

@ 20, 40 and 60 state variables (~ 10°,10'2 108
states)

@ No efficient insolubility test: could not distinguish
between insoluble and very difficult instances.

@ Main results for SP only (SP scales up by far the 2nd test series
best.)

@ LPG, HSP and FF: proportion of solved instances
wrt SP (timeout 10 minutes)



Phase transition becomes steeper

Model A: Phase transition on bigger problems
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Runtimes: mean

Model A: Runtimes on on bigger problems
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Runtimes: median

Model A: Median runtimes on bigger problems
1 T T T

6 ubility
0 runtimes —~—+-- 1 10
SP 40 runtimes v
0.8 = SP 60 runtimes =

06 f 11

Runtimes

A I

0.2 r

proportion of soluble instances
[ ]
median time to find plan in secs

0 : : : : * 0.01
1.5 2 25 3 35 4 45

ratio # operators / # state variables



Plan lengths

Model A: Plan lengths on bigger problems
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LPG timeouts

Model A: Success rate of LPG
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FF timeouts

Model A: Success rate of FF
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HSP timeouts

Model A: Success rate of HSP
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Why does SP scale up best?

@ Like LPG, SP’s problem representation explicitly
uses state variables. (a fundamental difference to
HSP and FF).

© Powerful general-purpose inferences: unit resolution,
clause learning, ..., as implemented by SAT solvers.
(a main difference to LPG) Discussion

© Systematic search algorithm (a main difference to
LPG)



Why does LPG scale up better than HSP, FF?

@ LPG’s problem representation explicitly uses state
variables.

@ State-space search in HSP and FF ignores the
structural information in the state variables (and
operators).

© HSP and FF look at the the state variables only when
computing the distance estimates.

Discussion



Why does HSP scale up better than FF?

@ FF has “Helpful Actions Pruning”: ignore operators
considered “not helpful” (as suggested by
computation of heuristic).

@ HAP is a factor in FF’'s good performance on many of
the big-and-easy benchmarks.

@ On easy problems performance improves and equals
to HSP when HAP is disabled.

@ So HAP is a big drawback when distance heuristics
do not work well (all difficult problems and many
easy ones.)

Discussion



Discussion

@ Are problems in the phase transition region difficult?
Yes, for all of the four planners.

@ And outside it they are easy?
Yes, for most of the planners. (exception: FF)

@ Do the results agree with what is known about the
algorithms?

@ Yes! Bounded model checking (~ satisfiability
planning) good in challenging real-world problems:
scalability not a direct function of the cardinality of
the state space.

@ Yes! State-space search has not been considered a
feasible approach to solve difficult problems with big
state spaces (> 10 million states).

© Yes/No! Standard planning benchmarks have huge
state spaces and are efficiently solved by some
state-space planners. But, these benchmarks are
actually rather easy.

Discussion



Relative strengths of different approaches

STRENGTHS

M blind state-space search
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Conclusions

@ We have proposed variants of Bylander’s model of
problem instances in classical planning.

@ We have tested some of the main approaches to
planning on instances inside and outside the phase
transition region.

@ Results clarify what the strengths of different
approaches are.
— Interesting complement to standard benchmarks.

Conclusions
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