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Motivation: planning

@ Practically all implementations of planning as
satisfiability, have used a quadratic size translation
from a problem instance to SAT.

@ Recently Rintanen, Heljanko & Niemela (AlJ 06 or
07) have given linear size translations which help
scale up to much bigger problems than earlier.

@ Invariants/mutexes, an important (but not logically
necessary) part of efficient SAT planning, have
guadratic size.

This, as the only quadratic part of the formulae, is
sometimes an obstacle to scalability: formulas have
sizes of several gigabytes.

Motivation



Motivation: general problem

Motivation

@ A binary relation (graph) on a set of n objects may
have n? elements (edges).

@ If the relation/graph is dense and n is high (10* >) the
number of elements/edges can be very high (108 >).

@ The representation of the elements/edges may
become impractical.

@ Goal: succinct representation of the relation/graph.



Cliques in constraint graphs

Definition
Let (N, E') be an undirected graph. Then a clique is
C C N such that {n,n'} € E for every n,n’ € C such that

n#n'.




Representation with O(n) Size and O(n)
Auxiliary Variables

[Rintanen et al. 2005]



Representation with O(n logn) size and

O(log n) auxiliary variables

Let C = {lo,l2,13,14,1s,16,17} be a clique consisting of 8
literals. Let xg, z1, x2 be new Boolean variables.

lo— (—\.To VANt A TAN —\xz)
l1— (ﬂxo VAR K ATVAN $2)
lp— (—\Jjo VA ATAY —|1’2)
l3— (ﬂxo ANz A 1‘2)
la— (l‘o N —x1 N —|1‘2)
ls— (IL'() VARmY A TAN .’Eg)
le— (xo A1 A —x2)
l7— (:L'o VA ATAY xz)

In general, for n literals there are n[log, n] 2-literal
clauses.



Complexity of finding cliques

@ Finding a maximum cardinality clique is NP-hard.
@ Approximation to any constant factor is NP-hard.
@ Of course, polynomial-time algorithms for finding

cliques exist but they have no approximation
guarantees.

@ (Bicliques do have polynomial-time 2-approximation
algorithms!)



General compression procedure

@ Find a big clique in the constraint graph.

@ If only small cliqgues were found, go to the last step.

© Represent the clique compactly.

© Remove the edges of the clique from the constraint
graph.

© Continue from step 1.

© Represent the remaining edges explicitly as 2-literal
clauses.



Bicliques

Definition

Let (IV, E') be an undirected graph. A biclique is a pair of
C C Nand(C’'C N suchthat CnC’ = () and
{{nl,nz}]nl < C, noy € C/} CFE.

The nm edges of an n, m biclique can be represented
with only one auxiliary variable and n + m edges.




Every clique is also a biclique

Cliques vs.
Bicliques
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Example: one 8-clique as three 4,4-bicliques
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: one 8-clique as three 4,4-bicliques

000 — g, 29 — —100
001—>.1:0, CC()—>—|101
010 — xg, ¢ ——110

011 111 011 — zq, 20— —111

Cliques vs.
Bicliques

010 110

001 101

000 ——— 100



Example: one 8-clique as three 4,4-bicliques

010

000

001

110

100

101

C‘qu_ues VS.
000— 21,21 ——010 |-
001 - 21,21 — 011
100 — T1,T1— =110

101 - xy, 21 — 111



Example: one 8-clique as three 4,4-bicliques

Cliques vs.
Bicliques

N

000 — x5, o — =001
010 — x5, 20 ——011
000 100 100 — z, 2o — —101
110 > xp, 20 — —111



: one 8-clique as three 4,4-bicliques

000 — z¢, 29 — —100
001—>.1:0, x0—>—|101

010 — xg, ¢ ——110
011 —— 111

011 - g, xog— 111

Cliques vs.

Bicliques
/ / 000 — 21,21 ——010
019 110 001 — 1,23 — 011
100—>$1, xr1— =110
101 —T1,T1 — 111
001 101

000 — x5, o — =001
010 — x5, 20 ——011
000 —— 100 100 -z, 2o ——101

110 - xp, 20 — —111



Example: one 8-clique as three 4,4-bicliques

It's equivalent to the n log, n encoding of cliques!

000 — g, 100 — —xq
001 — g, 101 — —xg
010 — g, 110 — —zg

ot At 011 — g, 111 — —ag
Cliques vs.
Bicliques
/ / 000 — 1,010 — —x1
019 110 001 — 1,011 — —aq
100 — x1, 110— -1
101 - z1,111 - -2y
001 101
000 — 5,001 — —p
010 — 22,011 — —xp
000 —— 100 100 — x5, 101 — —x»

110 -, 111 — —a»



Example: IPC Airport Problem

@ Problem represents the movement of airplanes at an
airport.

@ Constraints on the airplane movement

@ Halfway the instance series the formula sizes exceed
1 GB. Culprit: binary invariants/mutexes

@ All problems this far solvable in seconds: it's the
physical size, not the actual difficulty.




Example: Compression of the Constraint

Constraint graph with 62 nodes and 653 edges

Airport




Example: Compression of the Constraint

Replacing 13 x 16 = 208 by 13 + 16 = 29 edges.

Airport




Example: Compression of the Constraint

Graph

Replacing 11 x 18 = 198 by 11 + 18 = 29 edges.

Airport




=77 by 11 + 7 = 18 edges.

Example: Compression of the Constraint
Replacing 11 x 7



=70 by 10 + 7 = 17 edges.

Example: Compression of the Constraint
Replacing 10 x 7



Example: Compression of the Constraint

Graph

Replacing 8 x 8 = 64 by 8 + 8 = 16 edges.




Example: Compression of the Constraint

Graph

Replacing 6 x 6 = 36 by 6 + 6 = 12 edges.



Example: Compression of the Constraint

Graph

Total reduction is from 653 to 121 edges.
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Example: IPC Airport Problem

clauses for invariants

size in MB

instance before after before after
21 _4halfMUC_P2 182094 13191 259 0.37
22_4halfMUC_P3 275927 21388 4,06 0.58
23_4halfMUC_P4 381675 31776 560 0.84
24 _4halfMUC_P4 383791 30407 5.72 0.90
25 _4halfMUC_P5 478455 41719 7.24 1.18
26_4halfMUC_P6 587951 50247 8.85 1.43
27_4halfMUC_P6 572292 53721 9.01 1.57
28_4halfMUC_P7 670530 66060 10.62 1.89
36_5MUC P2 325136 18872 468 0.52
37_5MUC_P3 490971 30681 7.40 0.93
38 5MUC _P3 487600 29464 7.30 0.86
39 5MUC P4 655616 44647 10.08 1.34
40 5MUC_P4 657309 43872 10.04 1.27
41 5MUC P4 653940 42314 993 1.20




Other domains and applications

@ The size reduction for many other problems is far
less dramatic: 10, 30, 50 per cent.



Other domains and applications

@ The size reduction for many other problems is far
less dramatic: 10, 30, 50 per cent.
@ Action mutexes / interference constraints:

e Trivial O(n?) representation (used in BLACKBOX,
SatPlan, ...) catastrophic for big problems.

e We have given (Rintanen et al. 2005, 2007) linear
encodings: very good scalability in comparison to
BLACKBOX/SatPlan.

e Surprisingly, the biclique reduction is often better
than the linear encoding, but in few cases far worse.



Conclusions

@ We presented a biclique based technique for
representing sets of 2-literal clauses more compactly
(sometimes much more).

@ The basic idea is very simple and widely applicable.

@ Quadratic worst-case cannot be eliminated (there is
a simple argument showing this.)

Conclusion

@ We have shown how compression with cliques is a
special case of compression with bicliques.

@ Challenges: more efficient algorithms for finding big
cliques and bicliques
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