Compact Representation of Sets of Binary Constraints

Jussi Rintanen

August 30, 2006

Motivation: planning

- Practically all implementations of planning as satisfiability, have used a quadratic size translation from a problem instance to SAT.
- Recently Rintanen, Heljanko & Niemelä (AIJ 06 or 07) have given linear size translations which help scale up to much bigger problems than earlier.
- Invariants/mutexes, an important (but not logically necessary) part of efficient SAT planning, have quadratic size.

This, as the only quadratic part of the formulae, is sometimes an obstacle to scalability: formulas have sizes of several gigabytes.

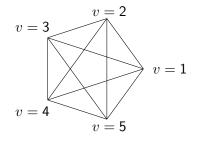
Motivation: planning

- Practically all implementations of planning as satisfiability, have used a quadratic size translation from a problem instance to SAT.
- Recently Rintanen, Heljanko & Niemelä (AIJ 06 or 07) have given linear size translations which help scale up to much bigger problems than earlier.
- Invariants/mutexes, an important (but not logically necessary) part of efficient SAT planning, have quadratic size.

This, as the only quadratic part of the formulae, is sometimes an obstacle to scalability: formulas have sizes of several gigabytes.

Motivation: planning

- Practically all implementations of planning as satisfiability, have used a quadratic size translation from a problem instance to SAT.
- Recently Rintanen, Heljanko & Niemelä (AIJ 06 or 07) have given linear size translations which help scale up to much bigger problems than earlier.
- Invariants/mutexes, an important (but not logically necessary) part of efficient SAT planning, have quadratic size.


This, as the only quadratic part of the formulae, is sometimes an obstacle to scalability: formulas have sizes of several gigabytes.

- A binary relation (graph) on a set of n objects may have n² elements (edges).
- If the relation/graph is dense and n is high (10⁴ >) the number of elements/edges can be very high (10⁸ >).
- The representation of the elements/edges may become impractical.
- Goal: succinct representation of the relation/graph.

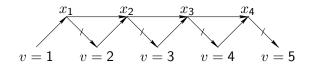
Cliques in constraint graphs

Definition

Let $\langle N, E \rangle$ be an undirected graph. Then *a clique* is $C \subseteq N$ such that $\{n, n'\} \in E$ for every $n, n' \in C$ such that $n \neq n'$.

Motivation

Cliques Explicit $O(n^2)$ Representation


 $O(n \log n)$ Representation Compression

Bicliques

Cliques vs. Bicliques

Application

Representation with O(n) Size and O(n)Auxiliary Variables

[Rintanen et al. 2005]

Motivation

Cliques Explicit $O(n^2)$ Representation

O(n) Representation $O(n \log n)$

Compression

Bicliques

Cliques vs. Bicliques

Application

Representation with $O(n \log n)$ size and $O(\log n)$ auxiliary variables

Let $C = \{l_0, l_2, l_3, l_4, l_5, l_6, l_7\}$ be a clique consisting of 8 literals. Let x_0, x_1, x_2 be new Boolean variables.

$$l_{0} \rightarrow (\neg x_{0} \land \neg x_{1} \land \neg x_{2})$$

$$l_{1} \rightarrow (\neg x_{0} \land \neg x_{1} \land x_{2})$$

$$l_{2} \rightarrow (\neg x_{0} \land x_{1} \land \neg x_{2})$$

$$l_{3} \rightarrow (\neg x_{0} \land x_{1} \land \neg x_{2})$$

$$l_{4} \rightarrow (x_{0} \land \neg x_{1} \land \neg x_{2})$$

$$l_{5} \rightarrow (x_{0} \land \neg x_{1} \land \neg x_{2})$$

$$l_{6} \rightarrow (x_{0} \land x_{1} \land \neg x_{2})$$

$$l_{7} \rightarrow (x_{0} \land x_{1} \land x_{2})$$

In general, for n literals there are $n \lceil \log_2 n \rceil$ 2-literal clauses.

Motivation

Cliques Explicit $O(n^2)$ Representation

 $O(n \log n)$ Representation

Compression

Bicliques

Cliques vs. Bicliques

Application

Complexity of finding cliques

- Finding a maximum cardinality clique is NP-hard.
- Approximation to any constant factor is NP-hard.
- Of course, polynomial-time algorithms for finding cliques exist but they have no approximation guarantees.
- (Bicliques do have polynomial-time 2-approximation algorithms!)

Motivation

Cliques Explicit $O(n^2)$ Representation O(n) Representation $O(n \log n)$ Representation

Compression

Bicliques

Cliques vs. Bicliques

Application

General compression procedure

- Find a big clique in the constraint graph.
- If only small cliques were found, go to the last step.
- Represent the clique compactly.
- Remove the edges of the clique from the constraint graph.
- Continue from step 1.
- Represent the remaining edges explicitly as 2-literal clauses.

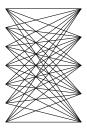
Motivation

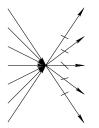
Cliques Explicit $O(n^2)$ Representation O(n) Representation $O(n \log n)$ Representation

Compression

Bicliques

Cliques vs. Bicliques


Application

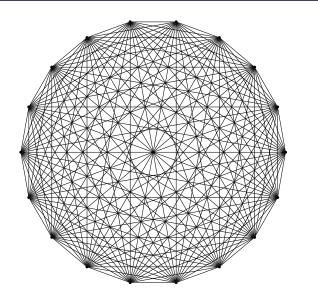

Bicliques

Definition

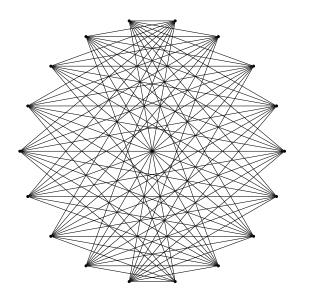
Let $\langle N, E \rangle$ be an undirected graph. A *biclique* is a pair of $C \subseteq N$ and $C' \subseteq N$ such that $C \cap C' = \emptyset$ and $\{\{n_1, n_2\} | n_1 \in C, n_2 \in C'\} \subseteq E$.

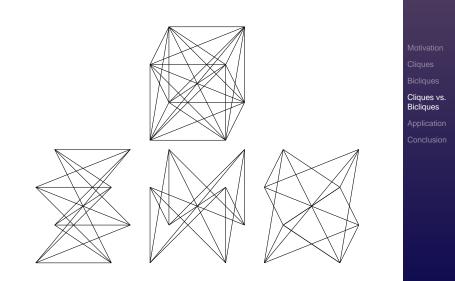
The nm edges of an n, m biclique can be represented with only one auxiliary variable and n + m edges.

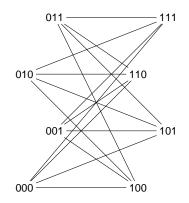
Motivation


Cliques

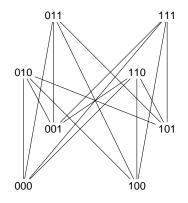
Bicliques Explicit $\mathcal{O}(n)$ Representation


Cliques vs. Bicliques


Application


Every clique is also a biclique

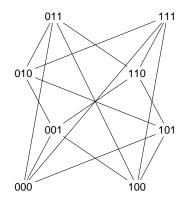
Every clique is also a biclique



 $\begin{array}{c} 000 \rightarrow x_0, x_0 \rightarrow \neg 100 \\ 001 \rightarrow x_0, x_0 \rightarrow \neg 101 \\ 010 \rightarrow x_0, x_0 \rightarrow \neg 110 \\ 011 \rightarrow x_0, x_0 \rightarrow \neg 111 \end{array}$

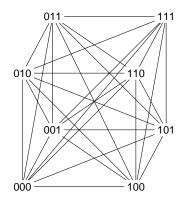
 $\begin{array}{c} 000 \rightarrow x_1, x_1 \rightarrow \neg 010 \\ 001 \rightarrow x_1, x_1 \rightarrow \neg 011 \\ 100 \rightarrow x_1, x_1 \rightarrow \neg 110 \\ 101 \rightarrow x_1, x_1 \rightarrow \neg 111 \end{array}$

 $\begin{array}{c} 000 \rightarrow x_2, x_2 \rightarrow \neg 001 \\ 010 \rightarrow x_2, x_2 \rightarrow \neg 011 \\ 100 \rightarrow x_2, x_2 \rightarrow \neg 101 \\ 110 \rightarrow x_2, x_2 \rightarrow \neg 111 \end{array}$


Cliques Bicliques Cliques vs. Bicliques Application

 $\begin{array}{c} 000 \rightarrow x_0, x_0 \rightarrow \neg 100 \\ 001 \rightarrow x_0, x_0 \rightarrow \neg 101 \\ 010 \rightarrow x_0, x_0 \rightarrow \neg 110 \\ 011 \rightarrow x_0, x_0 \rightarrow \neg 111 \end{array}$

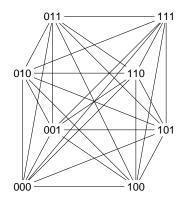
 $\begin{array}{c} 000 \rightarrow x_1, x_1 \rightarrow \neg 010 \\ 001 \rightarrow x_1, x_1 \rightarrow \neg 011 \\ 100 \rightarrow x_1, x_1 \rightarrow \neg 110 \\ 101 \rightarrow x_1, x_1 \rightarrow \neg 111 \end{array}$


 $\begin{array}{c} 000 \rightarrow x_2, x_2 \rightarrow \neg 001 \\ 010 \rightarrow x_2, x_2 \rightarrow \neg 011 \\ 100 \rightarrow x_2, x_2 \rightarrow \neg 101 \\ 110 \rightarrow x_2, x_2 \rightarrow \neg 111 \end{array}$

 $\begin{array}{c} 000 \rightarrow x_0, x_0 \rightarrow \neg 100 \\ 001 \rightarrow x_0, x_0 \rightarrow \neg 101 \\ 010 \rightarrow x_0, x_0 \rightarrow \neg 110 \\ 011 \rightarrow x_0, x_0 \rightarrow \neg 111 \end{array}$

 $\begin{array}{c} 000 \rightarrow x_1, x_1 \rightarrow \neg 010 \\ 001 \rightarrow x_1, x_1 \rightarrow \neg 011 \\ 100 \rightarrow x_1, x_1 \rightarrow \neg 110 \\ 101 \rightarrow x_1, x_1 \rightarrow \neg 111 \end{array}$

 $\begin{array}{c} 000 \rightarrow x_2, x_2 \rightarrow \neg 001 \\ 010 \rightarrow x_2, x_2 \rightarrow \neg 011 \\ 100 \rightarrow x_2, x_2 \rightarrow \neg 101 \\ 110 \rightarrow x_2, x_2 \rightarrow \neg 111 \end{array}$



 $\begin{array}{c} 000 \mathop{\longrightarrow} x_0, x_0 \mathop{\rightarrow} \neg 100 \\ 001 \mathop{\rightarrow} x_0, x_0 \mathop{\rightarrow} \neg 101 \\ 010 \mathop{\rightarrow} x_0, x_0 \mathop{\rightarrow} \neg 110 \\ 011 \mathop{\rightarrow} x_0, x_0 \mathop{\rightarrow} \neg 111 \end{array}$

$$\begin{array}{c} 000 \rightarrow x_1, x_1 \rightarrow \neg 010 \\ 001 \rightarrow x_1, x_1 \rightarrow \neg 011 \\ 100 \rightarrow x_1, x_1 \rightarrow \neg 110 \\ 101 \rightarrow x_1, x_1 \rightarrow \neg 111 \end{array}$$

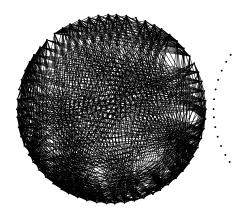
$$\begin{array}{c} 000 \rightarrow x_2, x_2 \rightarrow \neg 001 \\ 010 \rightarrow x_2, x_2 \rightarrow \neg 011 \\ 100 \rightarrow x_2, x_2 \rightarrow \neg 101 \\ 110 \rightarrow x_2, x_2 \rightarrow \neg 111 \end{array}$$

Example: one 8-clique as three 4,4-bicliques It's equivalent to the *n* log, *n* encoding of cliques!

 $\begin{array}{c} 000 \longrightarrow x_0, 100 \longrightarrow \neg x_0 \\ 001 \longrightarrow x_0, 101 \longrightarrow \neg x_0 \\ 010 \longrightarrow x_0, 110 \longrightarrow \neg x_0 \\ 011 \longrightarrow x_0, 111 \longrightarrow \neg x_0 \end{array}$

 $\begin{array}{c} 000 \rightarrow x_1, 010 \rightarrow \neg x_1 \\ 001 \rightarrow x_1, 011 \rightarrow \neg x_1 \\ 100 \rightarrow x_1, 110 \rightarrow \neg x_1 \\ 101 \rightarrow x_1, 111 \rightarrow \neg x_1 \end{array}$

 $\begin{array}{c} 000 \rightarrow x_2, 001 \rightarrow \neg x_2 \\ 010 \rightarrow x_2, 011 \rightarrow \neg x_2 \\ 100 \rightarrow x_2, 101 \rightarrow \neg x_2 \\ 110 \rightarrow x_2, 111 \rightarrow \neg x_2 \end{array}$

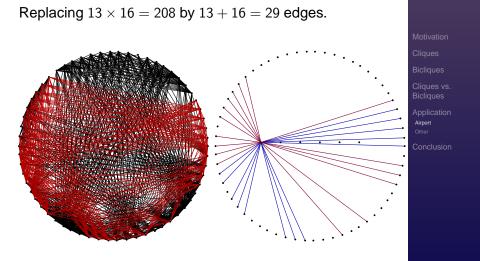

Example: IPC Airport Problem

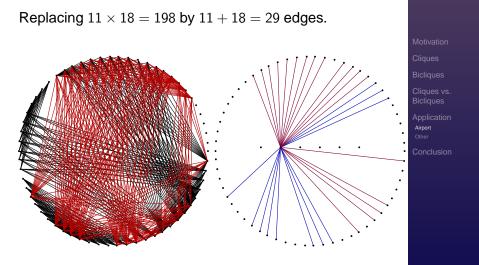
- Problem represents the movement of airplanes at an airport.
- Constraints on the airplane movement
- Halfway the instance series the formula sizes exceed 1 GB. Culprit: binary invariants/mutexes

Airport

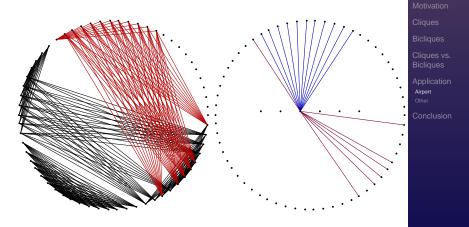
• All problems this far solvable in seconds: it's the physical size, not the actual difficulty.

Constraint graph with 62 nodes and 653 edges

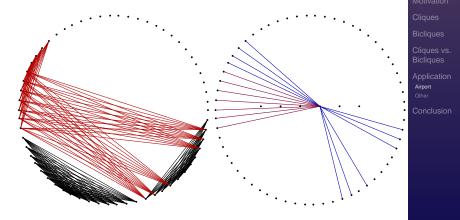

Motivatior

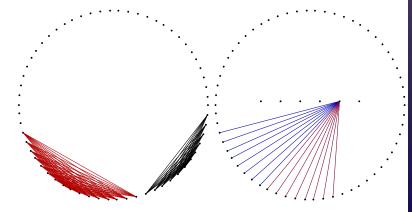

Cliques

Bicliques

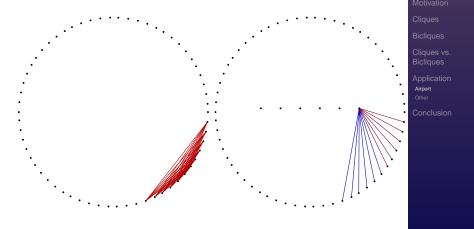

Cliques vs. Bicliques

Application Airport Other

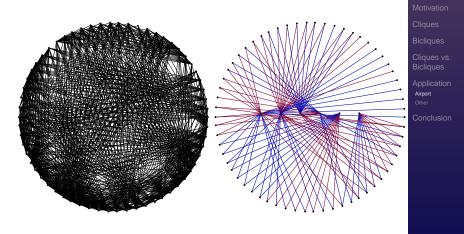



Replacing $11 \times 7 = 77$ by 11 + 7 = 18 edges.

Replacing $10 \times 7 = 70$ by 10 + 7 = 17 edges.



Replacing $8 \times 8 = 64$ by 8 + 8 = 16 edges.



Airport

Replacing $6 \times 6 = 36$ by 6 + 6 = 12 edges.

Total reduction is from 653 to 121 edges.

Example: IPC Airport Problem

clauses for invariants		size in MB		
before	after	before	after	Moti
182094	13191	2.59	0.37	Cliq
275927	21388	4.06	0.58	Bicli
381675	31776	5.60	0.84	Cliq
383791	30407	5.72	0.90	Bicli
478455	41719	7.24	1.18	Арр
587951	50247	8.85	1.43	Airpo
572292	53721	9.01	1.57	Con
670530	66060	10.62	1.89	
325136	18872	4.68	0.52	
490971	30681	7.40	0.93	
487600	29464	7.30	0.86	
655616	44647	10.08	1.34	
657309	43872	10.04	1.27	
653940	42314	9.93	1.20	
	before 182094 275927 381675 383791 478455 587951 572292 670530 325136 490971 487600 655616 657309	beforeafter18209413191275927213883816753177638379130407478455417195879515024757229253721670530660603251361887249097130681487600294646556164464765730943872	beforeafterbefore182094131912.59275927213884.06381675317765.60383791304075.72478455417197.24587951502478.85572292537219.016705306606010.62325136188724.68490971306817.40487600294647.306556164464710.086573094387210.04	beforeafterbeforeafter182094131912.590.37275927213884.060.58381675317765.600.84383791304075.720.90478455417197.241.18587951502478.851.43572292537219.011.576705306606010.621.89325136188724.680.52490971306817.400.93487600294647.300.866556164464710.081.346573094387210.041.27

Other domains and applications

- The size reduction for many other problems is far less dramatic: 10, 30, 50 per cent.
- Action mutexes / interference constraints:
 - Trivial $\mathcal{O}(n^2)$ representation (used in BLACKBOX, SatPlan, ...) catastrophic for big problems.
 - We have given (Rintanen et al. 2005, 2007) linear encodings: very good scalability in comparison to BLACKBOX/SatPlan.
 - Surprisingly, the biclique reduction is often better than the linear encoding, but in few cases far worse.

Cliques Bicliques Cliques vs Bicliques Application

Airport Other

Other domains and applications

- The size reduction for many other problems is far less dramatic: 10, 30, 50 per cent.
- Action mutexes / interference constraints:
 - Trivial $\mathcal{O}(n^2)$ representation (used in BLACKBOX, SatPlan, ...) catastrophic for big problems.
 - We have given (Rintanen et al. 2005, 2007) linear encodings: very good scalability in comparison to BLACKBOX/SatPlan.
 - Surprisingly, the biclique reduction is often better than the linear encoding, but in few cases far worse.

Cliques Bicliques Cliques vs. Bicliques Application

Conclusion

Other

Conclusions

- We presented a biclique based technique for representing sets of 2-literal clauses more compactly (sometimes much more).
- The basic idea is very simple and widely applicable.
- Quadratic worst-case cannot be eliminated (there is a simple argument showing this.)
- We have shown how compression with cliques is a special case of compression with bicliques.
- Challenges: more efficient algorithms for finding big cliques and bicliques