Compact Representation of Sets of Binary Constraints

Jussi Rintanen

August 30, 2006

Motivation: planning

- Practically all implementations of planning as satisfiability, have used a quadratic size translation from a problem instance to SAT.

Cliques
Bicliques
Cliques vs.
Bicliques
07) have given linear size translations which help scale un to much bigaer problems than earlier.
Invariants/mutexes, an important (but not logically necessary) part of efficient SAT planning, have quadratic size.
This, as the only quadratic part of the formulae, is sometimes an obstacle to scalability: formulas have sizes of several gigabvtes.

Motivation: planning

- Practically all implementations of planning as satisfiability, have used a quadratic size translation from a problem instance to SAT.

Cliques
Bicliques

- Recently Rintanen, Heljanko \& Niemelä (AIJ 06 or 07) have given linear size translations which help scale up to much bigger problems than earlier.

This, as the only quadratic part of the formulae, is sometimes an obstacle to scalability: formulas have sizes of several gigabytes.

Motivation: planning

- Practically all implementations of planning as satisfiability, have used a quadratic size translation from a problem instance to SAT.
- Recently Rintanen, Heljanko \& Niemelä (AIJ 06 or 07) have given linear size translations which help scale up to much bigger problems than earlier.
- Invariants/mutexes, an important (but not logically necessary) part of efficient SAT planning, have quadratic size.
This, as the only quadratic part of the formulae, is sometimes an obstacle to scalability: formulas have sizes of several gigabytes.

Motivation: general problem

- A binary relation (graph) on a set of n objects may have n^{2} elements (edges).
- If the relation/graph is dense and n is high $\left(10^{4}>\right)$ the number of elements/edges can be very high $\left(10^{8}>\right)$.
- The representation of the elements/edges may become impractical.
- Goal: succinct representation of the relation/graph.

Cliques in constraint graphs

Definition

Let $\langle N, E\rangle$ be an undirected graph. Then a clique is
$C \subseteq N$ such that $\left\{n, n^{\prime}\right\} \in E$ for every $n, n^{\prime} \in C$ such that $n \neq n^{\prime}$.

Motivation
Cliques
Explicit $O\left(n^{2}\right)$
Representation
$O(n)$ Representation
$O(n \log n)$
Representiation
Compression
Bicliques
Cliques vs.
Bicliques
Application
Conclusion

Representation with $O(n)$ Size and $O(n)$ Auxiliary Variables

[Rintanen et al. 2005]

Motivation
Cliques
Explicit $O\left(n^{2}\right)$
Representation
$O(n)$ Representation
$O(n \log n)$
Representation
Compression
Bicliques
Cliques vs.
Bicliques
Application
Conclusion

Representation with $\mathcal{O}(n \log n)$ size and $\mathcal{O}(\log n)$ auxiliary variables

Let $C=\left\{l_{0}, l_{2}, l_{3}, l_{4}, l_{5}, l_{6}, l_{7}\right\}$ be a clique consisting of 8 literals. Let x_{0}, x_{1}, x_{2} be new Boolean variables.

$$
\begin{aligned}
& l_{0} \rightarrow\left(\neg x_{0} \wedge \neg x_{1} \wedge \neg x_{2}\right) \\
& l_{1} \rightarrow\left(\neg x_{0} \wedge \neg x_{1} \wedge x_{2}\right) \\
& l_{2} \rightarrow\left(\neg x_{0} \wedge x_{1} \wedge \neg x_{2}\right) \\
& l_{3} \rightarrow\left(\neg x_{0} \wedge x_{1} \wedge x_{2}\right) \\
& l_{4} \rightarrow\left(x_{0} \wedge \neg x_{1} \wedge \neg x_{2}\right) \\
& l_{5} \rightarrow\left(x_{0} \wedge \neg x_{1} \wedge x_{2}\right) \\
& l_{6} \rightarrow\left(x_{0} \wedge x_{1} \wedge \neg x_{2}\right) \\
& l_{7} \rightarrow\left(x_{0} \wedge x_{1} \wedge x_{2}\right)
\end{aligned}
$$

Motivation
Cliques
Explicit $O\left(n^{2}\right)$
Representation
$O(n)$ Representation
$O(n \log n)$
Representation
Compression
Bicliques
Cliques vs.
Bicliques
Application
Conclusion

In general, for n literals there are $n\left\lceil\log _{2} n\right\rceil$ 2-literal clauses.

Complexity of finding cliques

- Finding a maximum cardinality clique is NP-hard.
- Approximation to any constant factor is NP-hard.
- Of course, polynomial-time algorithms for finding cliques exist but they have no approximation guarantees.
- (Bicliques do have polynomial-time 2-approximation algorithms!)

General compression procedure

(1) Find a big clique in the constraint graph.
(2) If only small cliques were found, go to the last step.
(3) Represent the clique compactly.
(4) Remove the edges of the clique from the constraint graph.

Cliques
Explicit $O\left(n^{2}\right)$
Representation
$O(n)$ Representation
$O(n \log n)$
Representation
Compression
Bicliques
Cliques vs.
Bicliques
Application
Conclusion

Bicliques

Definition

Let $\langle N, E\rangle$ be an undirected graph. A biclique is a pair of
$C \subseteq N$ and $C^{\prime} \subseteq N$ such that $C \cap C^{\prime}=\emptyset$ and $\left\{\left\{n_{1}, n_{2}\right\} \mid n_{1} \in C, n_{2} \in C^{\prime}\right\} \subseteq E$.

The $n m$ edges of an n, m biclique can be represented with only one auxiliary variable and $n+m$ edges.

Every clique is also a biclique

Every clique is also a biclique

Example: one 8-clique as three 4,4-bicliques

Example: one 8-clique as three 4,4-bicliques

Cliques
Bicliques
Cliques vs.
Bicliques
Application
Conclusion

Example: one 8-clique as three 4,4-bicliques

$000 \rightarrow x_{0}, x_{0} \rightarrow \neg 100$
$001 \rightarrow x_{0}, x_{0} \rightarrow \neg 101$
$010 \rightarrow x_{0}, x_{0} \rightarrow \neg 110$
$011 \rightarrow x_{0}, x_{0} \rightarrow \neg 111$

$000 \rightarrow x_{1}, x_{1} \rightarrow \neg 010$
Motivation
Cliques
Bicliques
Cliques vs.
Bicliques
Application,

Example: one 8-clique as three 4,4-bicliques

Example: one 8-clique as three 4,4-bicliques

$$
\begin{aligned}
& 000 \rightarrow x_{0}, x_{0} \rightarrow \neg 100 \\
& 001 \rightarrow x_{0}, x_{0} \rightarrow \neg 101 \\
& 010 \rightarrow x_{0}, x_{0} \rightarrow \neg 110 \\
& 011 \rightarrow x_{0}, x_{0} \rightarrow \neg 111 \\
& \\
& \\
& 000 \rightarrow x_{1}, x_{1} \rightarrow \neg 010 \\
& \text { Molivation } \\
& \text { Ciques } \\
& \text { Bicliques } \\
& \text { Cliques vs. } \\
& \text { Bicilques } \\
& 100 \rightarrow x_{1}, x_{1} \rightarrow \neg 011 \\
& \text { Application } \\
& 101 \rightarrow x_{1}, x_{1} \rightarrow \neg 110 \\
& \text { Conclusion }
\end{aligned}
$$

Example: one 8 -clique as three 4,4-bicliques

It's equivalent to the $n \log _{2} n$ encoding of cliques!

$$
\begin{aligned}
& 000 \rightarrow x_{0}, 100 \rightarrow \neg x_{0} \\
& 001 \rightarrow x_{0}, 101 \rightarrow \neg x_{0} \\
& 010 \rightarrow x_{0}, 110 \rightarrow \neg x_{0} \quad \begin{array}{l}
\text { Molivation } \\
011 \rightarrow x_{0}, 111 \rightarrow \neg x_{0} \\
\\
000 \rightarrow x_{1}, 010 \rightarrow \neg x_{1} \\
\text { Ciques } \\
\text { Biciques } \\
\text { Cliques vs. } \\
\text { Biciques } \\
\text { Application }
\end{array} \\
& 100 \rightarrow x_{1}, 011 \rightarrow \neg x_{1}, 110 \rightarrow \neg x_{1} \\
& 101 \rightarrow x_{1}, 111 \rightarrow \neg x_{1} \\
& \text { Conclusion }
\end{aligned}
$$

Example: IPC Airport Problem

- Problem represents the movement of airplanes at an airport.
- Constraints on the airplane movement
- Halfway the instance series the formula sizes exceed 1 GB. Culprit: binary invariants/mutexes
- All problems this far solvable in seconds: it's the physical size, not the actual difficulty.

Example: Compression of the Constraint Graph

Constraint graph with 62 nodes and 653 edges

Example: Compression of the Constraint Graph

Replacing $13 \times 16=208$ by $13+16=29$ edges.

Cliques
Bicliques
Cliques vs.
Bicliques
Application
Airport
Oither
Conclusion

Example: Compression of the Constraint Graph

Replacing $11 \times 18=198$ by $11+18=29$ edges.

Example: Compression of the Constraint Graph

$$
\text { Replacing } 11 \times 7=77 \text { by } 11+7=18 \text { edges } .
$$

Example: Compression of the Constraint Graph

Replacing $10 \times 7=70$ by $10+7=17$ edges.

Example: Compression of the Constraint Graph

Replacing $8 \times 8=64$ by $8+8=16$ edges.

Example: Compression of the Constraint Graph

Replacing $6 \times 6=36$ by $6+6=12$ edges.

Cliques
Bicliques
Cliques vs.
Bicliques
Application
Airport
Other
Conclusion

Example: Compression of the Constraint Graph

Total reduction is from 653 to 121 edges.

Cliques
Bicliques
Cliques vs.
Bicliques
Application
Airport
Other
Conclusion

Example: IPC Airport Problem

instance	clauses for invariants		size in MB		
	before	after	before	after	Motiv
21_4halfMUC_P2	182094	13191	2.59	0.37	clioues
22_4halfMUC_P3	275927	21388	4.06	0.58	Bicial
23_4halfMUC_P4	381675	31776	5.60	0.84	
24_4halfMUC_P4	383791	30407	5.72	0.90	Biciques
25_4halfMUC_P5	478455	41719	7.24	1.18	Application
26_4halfMUC_P6	587951	50247	8.85	1.43	
27_4halfMUC_P6	572292	53721	9.01	1.57	Conolusion
28_4halfMUC_P7	670530	66060	10.62	1.89	
36_5MUC_P2	325136	18872	4.68	0.52	
37_5MUC_P3	490971	30681	7.40	0.93	
38_5MUC_P3	487600	29464	7.30	0.86	
39_5MUC_P4	655616	44647	10.08	1.34	
40_5MUC_P4	657309	43872	10.04	1.27	
41_5MUC_P4	653940	42314	9.93	1.20	

Other domains and applications

- The size reduction for many other problems is far less dramatic: 10, 30, 50 per cent.

Other domains and applications

- The size reduction for many other problems is far less dramatic: 10, 30, 50 per cent.
- Action mutexes / interference constraints:
- Trivial $\mathcal{O}\left(n^{2}\right)$ representation (used in BLACKBOX, SatPlan, ...) catastrophic for big problems.
- We have given (Rintanen et al. 2005, 2007) linear encodings: very good scalability in comparison to BLACKBOX/SatPlan.
- Surprisingly, the biclique reduction is often better than the linear encoding, but in few cases far worse.

Conclusions

- We presented a biclique based technique for representing sets of 2-literal clauses more compactly (sometimes much more).
- The basic idea is very simple and widely applicable.
- Quadratic worst-case cannot be eliminated (there is a simple argument showing this.)
- We have shown how compression with cliques is a special case of compression with bicliques.
- Challenges: more efficient algorithms for finding big cliques and bicliques

