
Planning Graphs and Propositional Clause-Learning

Jussi Rintanen
NICTA and the Australian National University

Canberra, Australia

Abstract
The planning graph of Blum and Furst is one of the frequently
used tools in planning. It is a data structure which can be
visualized as a bipartite graph with state variables and actions
as nodes and which approximates (upper bound) the set of
reachable states with a given number of sets of simultaneous
actions.
We show that the contents of planning graphs follow from
two more general notions: extended clause learning restricted
to 2-literal clauses and the representation of parallel plans
consisting of STRIPS actions in the classical propositional
logic. This is the first time planning graphs have been given
an explanation in terms of the inference methods used in SAT
solvers. The work helps in bridging the gap between spe-
cialized algorithms devised for planning and general-purpose
algorithms for automated reasoning.

Introduction
Much of the development of efficient general-purpose rea-
soning algorithms for problems such as SAT is driven by
restricted but efficient inference methods. Examples of such
methods are conflict-directed clause learning (Bayardo, Jr.
and Schrag 1997; Marques-Silva and Sakallah 1996) and
unit propagation look-ahead (Li and Anbulagan 1997), both
of which are based on unit resolution.

One early important application of SAT to “real-world”
problems was planning as satisfiability (Kautz and Selman
1996). Most of the work on planning in the SAT context
has concentrated on finding more efficient ways of express-
ing the planning problems as a propositional formula. Much
less research has focused on looking at the SAT algorithms
directly and tried to see why SAT algorithms are successful
in solving planning problems and how the SAT algorithms
could become still better.

Many ad hoc inferences performed by planners as a pre-
processing step, such as testing whether all preconditions of
a STRIPS action could be made true, can be derived from the
logic representation of the planning problem with repeated
application of the unit resolution rule: if l is initially false
and none of the actions making l true is applicable in the ini-
tial state, the unit resolution rule allows inferring that l will
be false in the successor state as well, and so on. Clearly, for

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

any planner that uses a SAT solver to do search such special-
ized preprocessors are superfluous.

However, there are some specialized inference methods
for planning that clearly fall in the domain of logical infer-
ence, but that are still implemented by non-logical ad hoc
means. An interesting research problem is to understand
why this is the case and how general-purpose reasoning
methods or their implementations can be modified to cover
the specialized methods.

In this work we address one class of specialized inference
methods which has been vital for the efficiency of a number
of approaches to classical planning such as the GraphPlan
algorithm (Blum and Furst 1997) and Planning as Satisfia-
bility (Kautz and Selman 1992; 1996) and its adaptations to
other formalisms than SAT.

Planning graphs (Blum and Furst 1997) represent an
(over) approximation of the reachable states of a planning
problem. They are closely related to the notion of invariants
which are facts that are guaranteed to hold in all reachable
states of a planning problem (Gerevini and Schubert 1998).
Geffner (2004) has shown how the contents of the planning
graph logically follow from the representation of the plan-
ning problem in the propositional logic and can be inferred
by logical inference methods such as binary resolution in
polynomial time.

Our work takes a different look at planning graphs, mo-
tivated by the current SAT solving technology. In particu-
lar, we are interested in understanding why it is necessary
to use planning graphs or related reachability information
when using a SAT solver for finding plans, why current
SAT solvers are not able to make the corresponding infer-
ences automatically, and how the inference methods of SAT
solvers could be extended to make constructions such as
planning graphs obsolete. Our results carry over to invari-
ants (Gerevini and Schubert 1998; Rintanen 1998) which
contain the same kind of reachability information as plan-
ning graphs, but restricted to its time-independent part that
holds for all reachable states. For the purposes of efficient
planning, invariants are sufficient and have been very suc-
cessfully used in place of planning graphs for notions of par-
allel plans to which planning graphs do not apply (Rintanen,
Heljanko, and Niemelä 2006).

In this work, we show that the planning graph construc-
tion is covered by a form of clause learning. Clause learning

is a general purpose inference method (Marques-Silva and
Sakallah 1996) that is used by many of the most efficient
SAT solvers, often as their sole inference method.

Since planning graphs contain only literals and binary
mutexes, it is sufficient to use a restricted form of clause
learning for 2-literal clauses for constructing them. Un-
like the standard form of clause learning (Marques-Silva and
Sakallah 1996) which involves assigning values to variables
and then performing unit resolution, it turns out that, for
our purposes in this paper, it is necessary to replace unit
resolution by a stronger inference method called unit prop-
agation look-ahead (Li and Anbulagan 1997). While this
inference method is rarely used in practice, this discovery,
the discrepancy between the standard clause learning pro-
cedure and the requirement posed by planning graphs, both
explains why planning graphs and similar reachability in-
formation such as invariants (Gerevini and Schubert 1998;
Rintanen 1998) have been useful for SAT/CSP-based plan-
ning and suggests stronger inference methods SAT/CSP-
based planning would benefit from. Since the inferences
performed during the construction of the planning graph
and other planning-specific methods such as invariant algo-
rithms often seem a practical prerequisite for efficient plan-
ning, it would seem worthwhile to investigate more efficient
tractable inference methods in the context of planning in
more depth.

The structure of the paper is as follows. The first two sec-
tions explain the prerequisite concepts of planning graphs
and encodings of the classical planning problem in the
propositional logic. Then we outline the polynomial-time
inference algorithms that are the basis of some of the most
efficient SAT solvers. The following section explains how
the construction of planning graphs can be understood in
terms of restricted propositional inference. The last three
sections relate the results to earlier work, including long-
distance mutex constraints, and conclude the paper.

Preliminaries: Planning and Planning Graphs
Planning has been traditionally formalized in terms of an
initial state I , a finite set A of actions (c, a, d) where c, d
and a are sets of state variables, and a goal. The initial state
I is represented as the set of state variables that are initially
true. V is the finite set of all state variables in the problem.
In an action (c, a, d) the precondition c requires that the state
variables c are true for the action to be possible, the add list
a tells which state variables become true, and the delete list
d tells which state variables become false when the action is
taken. For an action o = (c, a, d) we define prec(o) = c,
add(o) = a and del(o) = d.

The GraphPlan algorithm and some other approaches to
planning use the notion of parallel plans in which more than
one action can be taken simultaneously. The parallelism in
this context does not mean temporal parallelism because the
actions have to satisfy an independence condition that makes
it possible to take the parallel actions independently of each
other in any order. Two actions may be in parallel if they
do not interfere. This notion of parallelism is useful because
it avoids imposing a total ordering on actions which don’t
have to be ordered.

Definition 1 (Interference) Actions o = (c, a, d) and o′ =
(c′, a′, d′) interfere if o 6= o′ and d ∩ (c′ ∪ a′) 6= ∅ or d′ ∩
(c ∪ a) 6= ∅.

If the actions interfere, then taking one action disables
the other action or different states are reached depending on
which action is taken first.

Blum and Furst’s planning graph construction (Blum and
Furst 1997) uses special NOOP actions for expressing that
state variables do not change. For a state variable v we have
NOOP(v) = ({v}, {v}, ∅). NOOPs somewhat simplify the
way the graph is defined but otherwise does not have an im-
portant role. Let NOOP = {NOOP(v)|v ∈ V }.

Mutexes (v, v′) ∈ Mv
i on state variables indicate that v

and v′ cannot both be true at time i. Mutexes (o, o′) ∈ Ma
i

on actions indicate that not both actions o and o′ can be taken
at time i (because they interfere or not both preconditions
can be true.)

Definition 2 A planning graph consists of the sets Ai and
Vi and the mutual exclusion (mutex) relations Ma

i and Mv
i

defined as follows for all i ≥ 0.

V0 = I
Mv

0 = ∅
A0 = {(c, a, d) ∈ A ∪ NOOP|c ⊆ V0, (v, v′) 6∈Mv

0
for all {v, v′} ⊆ c}

Ma
0 = {(o, o′) ∈ A0 ×A0|o and o′ interfere}

Vi+1 = {v ∈ V |o ∈ Ai, v ∈ add(o)}
Mv

i+1 = {(v, v′) ∈ Vi+1 × Vi+1|
(o, o′) ∈Ma

i for all {o, o′} ⊆ Ai

such that v ∈ add(o) and v′ ∈ add(o′)}
Ai+1 = {(c, a, d) ∈ A ∪ NOOP|c ⊆ Vi+1, (v, v′) 6∈Mv

i+1
for all {v, v′} ⊆ c}

Ma
i+1 = {(o, o′) ∈ Ai+1 ×Ai+1|o and o′ interfere or

(v, v′) ∈Mv
i for some v ∈ prec(o), v′ ∈ prec(o′)}

Planning graphs have many interesting properties. We
state only one which will be used in later proofs.

Lemma 3 If for i ≥ 1 we have (v, v′) ∈ Mv
i \Mv

i−1, then
either v 6∈ Vi−1 or v′ 6∈ Vi−1.

Preliminaries: Planning as Satisfiability
Before the work by Kautz and Selman (1992; 1996) logical
formalizations of planning were always based on deduction.
A plan would correspond to a proof that a sequence of ac-
tions reaches the goals. Kautz and Selman had the idea of
representing the planning problem as a satisfiability prob-
lem instead. Each plan corresponds to an assignment that
satisfies a propositional formula.

Let the set of state variables be V and the set of actions be
A. We consider a finite horizon length T ≥ 0. The atomic
propositions are vt for v ∈ V and t ∈ {0, . . . , T} andN(o)t

for o ∈ A and t ∈ {0, . . . , T − 1} where N(o) is a name for
action o. Intuitively, these atomic propositions express the
values of the state variables v ∈ V at different time points
and tell whether a given action a ∈ A is taken at a given
time point.

Atomic propositions are formulas, and if φ and φ′ are for-
mulas, then so are ¬φ, φ∨φ′ and φ∧φ′. The formula φ→φ′

is a shorthand for ¬φ ∨ φ′.
As is well known, every formula can be transformed into

an equivalent formula c1 ∧ c2 ∧ · · · ∧ ck where each of the
conjuncts ci is a clause, that is, a disjunction l1 ∨ l2 ∨ · · · ∨
lj of literals. The constant ⊥ (false) can be viewed as the
empty disjunction because φ ∨ ⊥ is equivalent to φ (we will
use this in defining the unit resolution rule). Literals l are
atomic propositions p or negated atomic propositions ¬p.
For a literal l we define its complement l by p = ¬p and
¬p = p.

Parallel Encoding
Let I and A be the initial state and the actions, respectively.

The clause set T (i, i + 1) which describes the possible
changes of state variable values between times i and i + 1
consists of the following clauses.

1. N(o)i→vi for all o ∈ A and v ∈ prec(o)

2. N(o)i→vi+1 for all o ∈ A and v ∈ add(o)

3. N(o)i→¬vi+1 for all o ∈ A and v ∈ del(o)

4. (vi ∧ ¬vi+1)→ (N(o1)i ∨ · · · ∨ N(on)i) for all v ∈ V
where o1, . . . , on are the actions such that v ∈ del(oj)
(remember that the empty disjunction for the case n = 0
is defined as ⊥)

5. (¬vi ∧ vi+1)→ (N(o1)i ∨ · · · ∨ N(on)i) for all v ∈ V
where o1, . . . , on are the actions such that v ∈ add(oj)

6. ¬(N(o)i ∧N(o′)i) for all {o, o′} ⊆ A such that o and o′
interfere

The initial state is described by the clause set IC consist-
ing of the following unit clauses.

1. v0 for all v ∈ I
2. ¬v0 for all v ∈ V \I

Note that we don’t include information about the goal in
the encoding. This is because the goal is not used when
constructing the planning graph.

The above formulae are clauses modulo elimination of
implications by φ→ψ ≡ ¬φ ∨ ψ and pushing negations in
front of atoms by the De Morgan rule¬(φ∧ψ) ≡ (¬φ∨¬ψ).

Now the planning problem with horizon length T ≥ 0 can
be encoded as IC ∪

⋃T−1
i=0 T (i, i+ 1).

This encoding has been used in some of the early works
(Ernst, Millstein, and Weld 1997) and has sometimes been
called a state-based encoding (Kautz and Selman 1996).

Serial Encoding
For plans that allow only one action in parallel we can use
the most traditional form of frame axioms that spell out ex-
plicitly for every action which state variables change and
which do not. This is the encoding first used for planning as
satisfiability (Kautz and Selman 1992).

The formula for the possible transitions between two con-
secutive time points is denoted by T s(i, i + 1) and consists
of the following clauses.

1: procedure UP(C)
2: for each unit clause l ∈ C and clause l ∨ φ ∈ C do
3: C := C ∪ {φ};
4: end do
5: return C;

Figure 1: An algorithm for Unit Propagation

1. N(o)i→vi for all o ∈ A and v ∈ prec(o).

2. N(o)i→vi+1 for all o ∈ A and v ∈ add(o),

3. N(o)i→¬vi+1 for all o ∈ A and v ∈ del(o),

4. (N(o)i ∧ ¬vi)→¬vi+1 for all o ∈ A and v ∈ V \add(o),

5. (N(o)i ∧ vi)→vi+1 for all o ∈ A and v ∈ V \del(o),

6.
∨

o∈AN(o)i

Polynomial-Time Inference Algorithms
We present the tractable inference algorithms used in many
SAT solvers that implement the DPLL procedure or some of
its variants.

Unit Propagation
Unit propagation (see Figure 1) is the application of the unit
resolution rule which infers from a unit clause l and a clause
l ∨ φ a new clause φ (where φ may be ⊥, a unit clause,
or a non-unit clause), until no more new clauses can be ob-
tained. It is an important component of SAT solvers that are
based on the Davis-Putnam-Logemann-Loveland procedure
(Davis, Logemann, and Loveland 1962), including recent ef-
ficient implementations such as zChaff and MiniSat.

Clauses inferred by unit propagation are all logical conse-
quences of the clause set. If the empty clause ⊥ is obtained
(which is inferring ⊥ from l and l) then the original clause
set was unsatisfiable.

Unit Propagation Look-Ahead
Unit propagation can be used as a component of many pow-
erful and efficient methods for SAT solving, one of which is
known as Unit Propagation Look-Ahead. Look-Ahead can
be used as an inference method and as an informed heuristic
estimator (Li and Anbulagan 1997). In this work we use it
for inference only. Figure 2 contains the basic procedure,
which involves adding a unit clause (a literal) l to a clause
set and running the unit propagation algorithm UP(C ∪{l}).
If the empty clause ⊥ is obtained, then l is a logical conse-
quence of the clause set, and can be added to it.

Some of the basic properties of UPLA(C) we will later
use are stated in the following lemma.

Lemma 4 1. If C ⊆ C ′ then UPLA(C) ⊆ UPLA(C ′).
2. UP(C) ⊆ UPLA(C)

3. If {l1, . . . , ln} ⊆ UPLA(C) and l1∨ · · · ∨ ln∨ l ∈ C then
l ∈ UPLA(C).

1: procedure UPLA(C)
2: C := UP(C);
3: repeat
4: change := false;
5: for each literal l do
6: if ⊥ ∈ UP(C ∪ {l}) then
7: begin
8: C := UP(C ∪ {l});
9: change := true;

10: end
11: end do
12: until ⊥ ∈ C or change = false;
13: return C;

Figure 2: An algorithm for Unit Propagation Look-Ahead

1: procedure learn2l(C)
2: C := UPLA(C);
3: repeat
4: change := false;
5: for each pair l, l′ of literals such that l 6= l′ do
6: if {l, l′} ∩ C = ∅
7: and l ∨ l′ 6∈ C
8: and ⊥ ∈ UPLA(C ∪ {l, l′})
9: then

10: begin
11: change := true;
12: C := UPLA(C ∪ {l ∨ l′});
13: end
14: end do
15: until change = false;
16: return C;

Figure 3: An algorithm for learning 2-literal clauses

Extended Clause Learning for 2-Literal Clauses
Clause learning in algorithms for testing the satisfiability of
propositional formulae proceeds by setting the values of lit-
erals and performing unit resolution until a contradiction is
obtained. If l1, . . . , ln are the literals that were set true, then
l1 ∨ · · · ∨ ln is a conflict clause. Similarly to the unit clauses
found with UPLA (which can be thought of as a simple spe-
cial case of clause learning), the conflict clause is a logical
consequence of the original clause set. Efficient implemen-
tations of clause learning attempt to find a small subset of
l1, . . . , ln that leads to a contradiction to obtain short con-
flict clauses.

We define an extended clause learning procedure re-
stricted to 2-literal clauses in Figure 3. This procedure dif-
fers from the clause learning procedures employed by most
SAT solvers in that it uses the UPLA procedure for deriving
conflicts, instead of the UP procedure, and that it restricts to
2-literal clauses and goes systematically through all of them.

Algorithms for learning clauses of arbitrary lengths in-
clude a (relatively complex) relevance test for the lit-
erals to avoid learning clauses that are subsumed by a
stronger/shorter clause that is logically entailed by C. In

the 2-literal case this reduces to the test on line 6.

Lemma 5 Let C be a set of clauses and C ′ = learn2l(C).
Then C |= C ′.

Proof: Sketch: If UPLA produces the empty clause ⊥ from
C ∪{l, l′}, then l∨ l′ is a logical consequence of the set. All
clauses l ∨ l′ added to the clause set have this property. �

Clause learning restricted to 2-literal clauses is not capa-
ble of inferring all 2-literal clauses that are logical conse-
quences. Often more complex inferences are needed.

The procedure in Figure 3 runs in polynomial time: there
is a quadratic number of pairs of literals to consider, the
number of iterations is proportional to the number of pairs
of literals, and at each iteration one call to unit resolution is
made which can be implemented to run in linear time (Dowl-
ing and Gallier 1984).

Resolution Proofs of Planning Graphs
In this section we give some intuitions about the resolu-
tion proofs involved in computing the contents of planning
graphs by the tractable inference algorithms and the parallel
encoding of planning. The algorithms are based on the unit
resolution rule, the unit propagation look-ahead algorithm,
and the clause learning algorithm.

The resolution proofs we outline here, or similar ones,
can be obtained from the computations of those inference
algorithms.

Reasoning by unit propagation directly yields conven-
tional resolution proofs. Resolution proofs in look-ahead
and in clause-learning are less explicit in the computation
but can be extracted in a systematic way in polynomial time
in the size of the clause set and the size of the derivation of
the conflict-clause.

The resolution proof for the mutex ¬vi ∨ ¬v′i uses the
unit clauses vi and v′i which are first resolved with the frame
axioms for the two state variables,

vi−1 ∨ ¬vi ∨N(o1)i−1 ∨ · · · ∨N(om)i−1

v′i−1 ∨ ¬v′i ∨N(o′1)
i−1 ∨ · · · ∨N(o′m′)i−1

as well as binary clauses that indicate that literals in
{vi−1, N(o1)i−1, . . . , N(om)i−1} pairwise contradict liter-
als in {v′i−1, N(o′1)

i−1, . . . , N(o′m′)i−1}, and hence the
two frame axioms cannot be true simultaneously with vi and
v′i. The binary clauses express the direct and indirect mu-
tual exclusion relations between the actions in the two sets
and between v′i−1 and the actions that make vi true (sym-
metrically for vi−1 and v′i.)

The proofs can be constructed in different ways but it is
probably easiest to start from one of the frame axioms and
resolve each of the literals with binary clauses until only the
complement of one of the literals in the second frame axiom
is left. This is done for each of the literals in the second
frame axiom. Finally, the resulting unit clauses are resolved
with the second frame axiom to obtain the empty clause.

Assume there are n actions that make v true and n′ actions
that make v′ true. Then the number of resolution steps is

2 + (n+ 1)(n′ + 1) + (n′ + 1)

¬s2 ∨ ¬t2
¬m2

s,t ∨ s2 ¬m2
s,t ∨ t3 ¬m2

s,t ∨ ¬s3
¬m2

s,u ∨ s2 ¬m2
s,u ∨ u3 ¬m2

s,u ∨ ¬s3
¬m2

t,s ∨ t2 ¬m2
t,s ∨ s3 ¬m2

t,s ∨ ¬t3
¬m2

t,u ∨ t2 ¬m2
t,u ∨ u3 ¬m2

t,u ∨ ¬t3
¬m2

u,s ∨ u2 ¬m2
u,s ∨ s3 ¬m2

u,s ∨ ¬u3

¬m2
u,t ∨ u2 ¬m2

u,t ∨ t3 ¬m2
u,t ∨ ¬u3

¬m2
s,t ∨ ¬m2

s,u ¬m2
t,s ∨ ¬m2

t,u ¬m2
u,s ∨ ¬m2

u,t

¬m2
s,t ∨ ¬m2

u,s ¬m2
s,u ∨ ¬m2

t,s ¬m2
t,s ∨ ¬m2

u,t

¬m2
t,u ∨ ¬m2

s,t ¬m2
u,s ∨ ¬m2

t,u ¬m2
u,t ∨ ¬m2

s,u

s2 ∨ ¬s3 ∨m2
t,s ∨m2

u,s ¬s2 ∨ s3 ∨m2
s,t ∨m2

s,u

t2 ∨ ¬t3 ∨m2
s,t ∨m2

u,t ¬t2 ∨ t3 ∨m2
t,s ∨m2

t,u

u2 ∨ ¬u3 ∨m2
s,u ∨m2

t,u ¬u2 ∨ u3 ∨m2
u,s ∨m2

u,t

Table 1: Clauses Formalizing the Example Problem

if only one mutex (binary clause) is needed to show that each
pair of literals in the two frame axioms is incompatible. This
is the best case which occurs when all action pairs’ mutual
exclusivity is explicit in one binary clause. In the worst case
one may need three binary clauses per action pair (precon-
dition axioms for both plus one fact mutex).

We illustrate the resolution proofs with a simple planning
problem. The basic step in the computation of planning
graphs (and invariants) is to establish that a mutex (v, v′)
that holds at a given time continues to hold at the next.

Example 6 Consider the planning problem in which one
can move between locations s, t and u. This is formalized
with actions

ms,t = ({s}, {t}, {s}), ms,u = ({s}, {u}, {s}),
mt,s = ({t}, {s}, {t}), mt,u = ({t}, {u}, {t}),
mu,t = ({u}, {t}, {u}), mu,s = ({u}, {s}, {u}).

The clauses formalizing these actions for time point 2 are
listed in Table 1.1 We construct a refutation proof for ¬s3 ∨
¬t3. Hence we can use the negation s3 ∧ t3 of this formula
in the resolution proof. We assume that we have already
derived the corresponding clause ¬s2 ∨¬t2 for the previous
layer of the planning graph.

We can derive¬m2
u,t from the frame axiom for s as shown

in Figure 4. The derivations of ¬m2
s,t and ¬t2 are similar.

After deriving the literals ¬m2
s,t, ¬m2

u,t and ¬t2 the
empty clause is obtained from the frame axiom for t by the
obvious consecutive resolution steps (see Figure 5.) �

Planning Graphs Reduced to Clause Learning
We will show that the computation of the mutexes in the
planning graph is subsumed by the computation of 2-literal
clauses by the extended clause learning algorithm for the
parallel encoding of planning.

1This could have been any other time point just as well.

s2 ∨ ¬s3 ∨m2
t,s ∨m2

u,s

s2 ∨m2
t,s ∨m2

u,s

s2 ∨m2
t,s ∨ ¬m2

u,t

s2 ∨ ¬m2
u,t

¬u2 ∨ ¬m2
u,t

¬m2
u,t

s3

¬m2
u,s ∨ ¬m2

u,t

¬m2
t,s ∨ ¬m2

u,t

¬s2 ∨ ¬u2

¬m2
u,t ∨ u2

Figure 4: Derivation of ¬m2
u,t

t3

¬m2
s,t

¬m2
u,t

¬t2

t2 ∨ ¬t3 ∨m2
s,t ∨m2

u,t

t2 ∨m2
s,t ∨m2

u,t

t2 ∨m2
u,t

t2

⊥

Figure 5: Refutation Proof for ¬s3 ∨ ¬t3

Definition 7 For a planning problem with a given hori-
zon length T ≥ 0 and actions A define the clause set
C = {v0|v ∈ I} ∪ {¬v0|v ∈ V \I} ∪

⋃T−1
i=0 T (i, i + 1)

for expressing reachability in T steps.

Theorem 8 Let Vi and Mv
i for all i ∈ {0, . . . , T} and Ai

and Ma
i for all i ∈ {0, . . . , T − 1} form the planning graph

as in Definition 2. Let C0 = C be the clause set from Def-
inition 7. Let Ci, i ≥ 1 be the sets obtained from C0 inside
learn2l(C0) after trying out all pairs of literals vi and v′i
on line 5 (following the construction of the planning graph
level by level, with Ci−1 ⊆ Ci.)

Then for all i ≥ 0 and {v, v′} ⊆ V and o ∈ A,
1. if v 6∈ Vi then ¬vi ∈ UPLA(Ci),
2. if (v, v′) ∈Mv

i then ¬vi ∨ ¬v′i ∈ Ci, and
3. if o 6∈ Ai then ¬N(o)i ∈ UPLA(Ci),

Proof: We prove the claim by induction on i.
Base case i = 0:

1. For any v ∈ V , v 6∈ V0 implies v 6∈ I implies ¬v0 ∈
C0 ⊆ UPLA(C0).

2. There are no fact mutexes at the 0th level of the planning
graph and the claim therefore trivially holds.

3. If o 6∈ A0 then prec(o) 6⊆ V0, that is, there is v ∈ prec(o)
such that v 6∈ I . Hence ¬N(o)0 ∨ v0 ∈ C0 and ¬v0 ∈
C0. By unit resolution we have ¬N(o)0 ∈ UP(C0) ⊆
UPLA(C0).

Inductive case i ≥ 1:

1. Assume v 6∈ Vi.
Hence NOOP(v) 6∈ Ai−1 and v 6∈ Vi−1 and by the induc-
tion hypothesis ¬vi−1 ∈ UPLA(Ci−1) ⊆ UPLA(Ci).
This also implies that o 6∈ Ai−1 for any other action with
v ∈ add(o). Hence by the induction hypothesis we have
¬N(o)i−1 ∈ UPLA(Ci−1) ⊆ UPLA(Ci).
Hence complements of all literals in the frame axiom
vi−1 ∨¬vi ∨N(o1)i−1 ∨ · · · ∨N(on)i−1 except ¬vi are
in UPLA(Ci), and therefore ¬vi ∈ UPLA(Ci).

2. Assume (v, v′) ∈ Mv
i . We will show that ⊥ ∈

UPLA(Ci−1 ∪ {vi, v′i}) from which the claim follows
by the definition of learn2l. The proof is symmetric with
respect to v and v′, so we show one case only.
We will be looking at the frame axiom

(¬v′i−1 ∧ v′i)→(N(o1)i−1 ∨ · · · ∨N(on)i−1)

where o1, . . . , on are all the actions that make v′ true. Ex-
pressed as a clause it is

v′i−1 ∨ ¬v′i ∨N(o1)i−1 ∨ · · · ∨N(on)i−1.

Let o be any action that makes v true. At some point the
UPLA algorithm tries out N(o)i−1, that is, sets it true.
By definition of Mv

i , (o, o′) ∈ Ma
i−1 for any action

o′ ∈ Ai−1\NOOP such that v′ ∈ add(o′). Take any
such o′. Hence either o and o′ interfere and ¬N(o)i−1 ∨
¬N(o)′i−1 ∈ Ci−1, or for some (vp, v

′
p) ∈Mv

i−1 we have
vp ∈ prec(o) and v′p ∈ prec(o′) and hence {N(o)i−1→
vi

p, N(o′)i−1 → v′ip ,¬vi−1
p ∨ ¬v′i−1

p } ⊆ Ci−1. Hence
¬N(o′)i−1 ∈ UPLA(Ci) for all o′ ∈ Ai−1 such that
v′ ∈ add(o′), and the complements of all the action lit-
erals in the frame axiom for v′ are obtained by unit reso-
lution from N(o)i−1. Hence v′i−1 is the only unassigned
literal in the frame axiom.
By definition of Mv

i also (o,NOOP(v′)) ∈ Ma
i−1, that

is, the two actions interfere or have mutually exclusive
preconditions, which means that either

(a) v′ ∈ del(o) or
(b) v′′ ∈ prec(o) and (v′′, v′) ∈Mv

i−1 for some v′′.

In the first case we have N(o)i−1→¬v′i ∈ Ci−1 which
directly leads to contradiction because we already had set
both N(o)i−1 and v′i true. In the second case we have
{N(o)i−1 → v′′i−1,¬v′′i−1 ∨ ¬v′i−1} ⊆ Ci−1, from
which we obtain ¬v′i−1 by unit propagation, falsifying
the remaining literal v′i−1 in the frame axiom and leading
to contradiction.
Because every action o that makes v true leads to a con-
tradiction, the UPLA algorithm, for given {vi, v′i}, will
add every such literal ¬N(o)i−1 to the clause set. Hence
the frame axioms for vi and v′i yield vi−1 and v′i−1 by
unit resolution.
It remains to be shown that⊥ ∈ UPLA(Ci−1∪{vi, v′i}).
We consider two cases.

a) (v, v′) ∈Mv
i−1: By the induction hypothesisCi−1 con-

tains ¬vi−1 ∨ ¬v′i−1. By unit resolution a contradic-
tion is derived with the vi−1 and v′i−1 obtained from
the frame axioms.

b) (v, v′) 6∈ Mv
i−1: By Lemma 3 this means that either

v 6∈ Vi−1 or v′ 6∈ Vi−1. By the induction hypothesis ei-
ther ¬vi−1 ∈ UPLA(Ci−1) or ¬v′i−1 ∈ UPLA(Ci−1).
In both cases a contradiction follows with unit resolu-
tion.

3. Assume o 6∈ Ai.
Hence either prec(o) 6⊆ Vi−1 or (v, v′) ∈ Ma

i−1 for some
{v, v′} ∈ prec(o).
Hence either ¬vi−1 ∈ UPLA(Ci−1) for some v ∈
prec(o) (by the induction hypothesis) or¬vi−1∨¬v′i−1 ∈
Ci−1 for some {v, v′} ∈ prec(o) (by the previous case 2.)
In both cases it follows that ¬N(o)i ∈ UPLA(Ci).

�

Why does the standard clause learning procedure not infer
the mutexes?2 To derive the mutex (v, v′) at time i+ 1 as a
refutation proof, we can use the frame axiom

vi ∨ ¬vi+1 ∨N(o1)i ∨ · · · ∨N(on)i,

the frame axiom for v′, and the clauses ¬vi ∨¬v′i, vi+1 and
v′i+1. The only literal in the frame axiom that is available at
a unit clause is vi+1, and hence no unit resolution steps are
possible.3 Therefore no contradiction can be derived and
the mutex cannot be inferred. To derive a contradiction it
has to be shown that all possible ways of making v true are
mutually exclusive of all possible ways of making v′ true.
The case analysis over different ways of making v true is
performed by UPLA but not by UP.

Similar arguments about the weakness of the inference
methods carry over to other known encodings of the classical
planning problem in the classical propositional logic.

Encodings with a notion of plans differing from the par-
allel plans in the first encoding we gave are not, of course,
directly related to planning graphs. The sequential encod-
ing of planning, which allows at most one action per time
point, can be shown to sanction similar inferences but an
exact match with planning graphs does not exist.

Example 9 Consider actions oa = (∅, {a}, ∅) and ob =
(∅, {b}, ∅) and an initial state in which both a and b are
false. The planning graph contains both a and b on the
first level but these facts are not mutex. But ¬a1 ∨ ¬b1 is
inferred by learn2l with the sequential encoding T s(0, 1):
from unit clauses a1 and b1 and the initial state literals ¬a0

and ¬b0 one obtains by unit resolution respectively ¬o0a and
¬o0b which contradicts o0a ∨ o0b . �

We do not show in this work but believe that the sequential
encoding T s(i, i + 1) allows to infer the same invariants as
some of the iterative invariant algorithms (Rintanen 1998).

2Some mutexes can be obtained by learning other (possibly
non-binary) auxiliary clauses first as an intermediate step. We don’t
consider this possibility in this work.

3Assuming that there is at least one action that can make v true.

Discussion
So planning graphs are a specialized technique for inferring
a class of 2-literal clauses. These clauses are very useful for
speeding up plan search by satisfiability algorithms (Kautz
and Selman 1996) but they are not systematically inferred by
SAT solvers which is the reason why specialized algorithms
have emerged.

General clause learning algorithms can infer some 2-
literal clauses l ∨ l′ in which l and l′ say something about
different time points. Consider a planning problem in which
the only action making a true also makes b true and in which
no action makes b false. Now ¬at ∨ bt+i follows for any
t ≥ 0 and i ≥ 0. Planning graphs don’t say anything about
such clauses but SAT solvers can learn such clauses never-
theless.

Planning graphs are not naturally definable for more gen-
eral planning languages than STRIPS, and, the well-known
tractable inference methods for the propositional logic do
not infer the desired mutexes for such languages. In fact, in-
ferring mutexes for languages that sanction arbitrary propo-
sitional formulae as preconditions is NP-hard because test-
ing the possibility of simultaneous actions involves a satis-
fiability test. To circumvent this problem, polynomial-time
approximations may be used.

Unit resolution, unit propagation look-ahead, and
conflict-directed clause learning are the main inference
methods used in the best systematic SAT solvers. There
are other powerful polynomial-time inference methods that
have been used as preprocessors but rarely as part of a
SAT solver, including binary hyper-resolution (Bacchus and
Winter 2004), simplification methods based on the implica-
tion graphs of binary clauses (Brafman 2001), and restricted
forms of resolution (Subbarayan and Pradhan 2005). None
of these preprocessors infer the contents of the planning
graph. The binary hyper-resolution rule (Bacchus and Win-
ter 2004) performs inferences that are close to those that are
required (and, interestingly, can be implemented in terms of
unit-resolution look-ahead which also turned out to be nec-
essary to capture planning graphs with clause learning) but
falls slightly short.

Long Distance Mutexes
Chen et al. (2007) propose a form of constraints they call
long distance mutual exclusion or londex. Similarly to the
mutexes in the planning graph, the londex constraints ex-
press that the truth of two state variables is mutually exclu-
sive but possibly at different time points.

In this section we show that long-distance mutexes follow
from the basic formalization of planning as satisfiability by
unit resolution. This means that the efficiency gains Chen
et al. obtain from long-distance mutexes are not because
of some additional inferences long-distance mutexes would
sanction (as those inferences are performed by any standard
systematic SAT solver already) but because of some sec-
ondary effect of the additional constraints on the functioning
of SAT solvers.

Chen et al. derive long-distance mutual exclusion con-
straints from graphs (N,E) that represent, for sets N of

Boolean state variables of which exactly one is true at a time,
how the values of the variables can change. These graphs are
sometimes called Domain Transition Graphs (DTG). There
is an edge (v, v′) ∈ E iff there is an action o that can be
taken only if v is true and that makes v′ true and v false, and
variables in N are made true by actions of this form only.
In typical planning benchmarks such sets express the differ-
ence possible locations of an object.

There is a long-distance mutex (v, d, v′) if the shortest
path in the graph from v to v′ has length d. This means that
one needs at least d actions to make v′ true when starting
from a state in which v is true, and hence ¬v′ must hold in
all states that are reachable by less than d actions.

Identification DTGs (N,E) is typically based on detect-
ing that ¬v ∨ ¬v′ is an invariant for every {v, v′} ⊆ N
(Chen, Xing, and Zhang 2007), so we assume that these in-
variants are included in the encoding of the planning prob-
lem, as the planning graph or otherwise.

Our result about long-distance mutual exclusion con-
straints shows that the unreachability of v ∈ N in a DTG
can be inferred by unit resolution. For a variable v ∈ N ,
from vt we can derive ¬v′t for all other variables v′ ∈ N
by unit resolution from the invariants ¬vt ∨ ¬v′t. In the in-
ductive step we can use the frame axiom for v′ to show that
¬v′t+i must hold for all i < n when the distance of v′ from
v is n: we already have ¬v′t+i−1, we show that none of the
actions making v′ true at t+ i can be taken, and finally infer
¬v′t+i from the frame axiom by unit resolution.

Theorem 10 Let C be clauses encoding the planning prob-
lem and including invariants ¬v1∨¬v2 for all DTGs (N,E)
and {v1, v2} ⊆ N such that v1 6= v2. Let v ∈ N be a vari-
able in a DTG (N,E). Let t ≥ 0 be an integer. Then for
all variables v′ ∈ N , if the shortest path from v to v′ in the
DTG has length ≥ n, then ¬v′t+i can be derived by unit
resolution from C ∪ {vt} for all i ∈ {0, . . . , n− 1}.

Proof: By induction on n. We show for variables further
and further away from v that their negations are derivable
for time points < t + n. The inductive case is proved by a
nested induction proof.

Base case n = 0: The claim is trivially true, because
i ∈ {0, . . . , 0− 1} does not exist.

Inductive case n ≥ 1: The proof is by induction on i.
Base case i = 0: By assumption ¬vt ∨ ¬v′t ∈ C and the

claim follows immediately.
Inductive case i ≥ 1 and i < n:
Let v′ ∈ N be a variable with a distance ≥ n from v in

(N,E). By the induction hypothesis we can derive ¬v′t+j

by unit resolution from C ∪ {vt} for all j ∈ {0, . . . , i− 1}.
We show that ¬v′t+i is derivable by unit resolution from

C ∪ {vt}. Every action o that makes v′ true has a precondi-
tion v′′ with distance ≥ n − 1 from v. Hence by the outer
induction hypothesis ¬v′′t+i−1 is derivable from C ∪ {vt}
by unit resolution and hence by the clause N(o)t+i−1 →
v′′t+i−1 we can further derive ¬N(o)t+i−1.

Consider the frame axiom v′t+i−1 ∨ ¬v′t+i ∨
N(o1)t+i−1 ∨ · · · ∨ N(ok)t+i−1 where o1, . . . , ok are
all the actions that make v′ true. We have derived all other

literals in this clause by unit resolution from C ∪ {vt}
except ¬v′t+i, and hence we can derive ¬v′t+i by unit
resolution. �

Long-distance mutual exclusion constraints for actions
follow from the long-distance mutual exclusion constraints
for facts by unit resolution. This is a direct consequence of
the way the long-distance mutexes for actions are defined:
two actions have distance ≥ d if they have preconditions
with distance d or they have effects with distance d. Let two
actions o and o′ respectively have the preconditions a and
b. If the first action is taken at time t, then we can infer
at from ot and ot→ at by unit resolution, and as we have
shown above, ¬bt+i follows by unit resolution from at for
all i ∈ {0, . . . , d − 1}, and consequently we get o′t+i from
o′t+i→ bt+i by a further unit resolution step. Distances be-
tween a precondition and an effect or vice versa similarly
induce distance lower bounds for two actions.

Chen et al. (2007) show a speed-up in the running times
of a SAT solver when the long-distance mutex constraints
are included in the problem encoding. They claim that the
constraints ”effectively prune the search space”. As we have
shown above, the search space is not affected by the ad-
dition of these constraints. The remaining possible expla-
nations for the speed-up include faster detection of contra-
dictions by unit propagations through ”short cuts” provided
by the long-distance mutex constraints, more useful learned
conflict-clauses, or changes in the variable selection heuris-
tic due to the additional constraints. However, none of these
explanations is directly related to the main idea of the long-
distance mutexes, which strongly suggests that the same or
better efficiency gains can be obtained by planning-specific
modifications to the SAT solver.

Conclusions
We have shown that the planning graph construction of
Blum and Furst can be viewed as an instance of an extended
form of the clause learning inference method. An earlier
work by Geffner (2004) gives a logical explanation of plan-
ning graphs, but does not use those tractable inference meth-
ods that are used by SAT solvers.

We believe that the approach adopted in this paper, reduc-
ing apparently planning specific algorithms and construc-
tions to well-known general-purpose algorithms and infer-
ence methods, helps putting important planning techniques
in the proper perspective and recognizing further avenues to
powerful general-purpose planning techniques.

The work raises important questions about SAT algo-
rithms and encodings of planning and other problems. Is
it possible to bridge the gap between the strengths of our
extended clause learning algorithm (which uses UPLA) and
the standard clause learning algorithms (which use UP) by
devising more powerful encodings of planning which sanc-
tion the inferences which currently require UPLA? Can cur-
rent SAT solvers be efficiently strengthened to capture the
kind of inferences for which researchers have felt compelled
to devise specialized inference algorithms?

Acknowledgements
The research was funded by Australian Government’s De-
partment of Broadband, Communications and the Digi-
tal Economy and the Australian Research Council through
NICTA and the DPOL project.

References
Bacchus, F., and Winter, J. 2004. Effective preprocess-
ing with hyper-resolution and equality reduction. In Hoos,
H. H., and Mitchell, D. G., eds., Theory and Applications
of Satisfiability Testing, 7th International Conference, SAT
2004, Vancouver, BC, Canada, May 10-13, 2004, Revised
Selected Papers, 341–355. Springer-Verlag.
Bayardo, Jr., R. J., and Schrag, R. C. 1997. Using CSP
look-back techniques to solve real-world SAT instances. In
Proceedings of the 14th National Conference on Artificial
Intelligence (AAAI-97) and 9th Innovative Applications of
Artificial Intelligence Conference (IAAI-97), 203–208.
Blum, A. L., and Furst, M. L. 1997. Fast planning
through planning graph analysis. Artificial Intelligence
90(1-2):281–300.
Brafman, R. I. 2001. A simplifier for propositional formu-
las with many binary clauses. In Nebel, B., ed., Proceed-
ings of the 17th International Joint Conference on Artificial
Intelligence, 515–522. Morgan Kaufmann Publishers.
Chen, Y.; Xing, Z.; and Zhang, W. 2007. Long-distance
mutual exclusion for propositional planning. In Veloso, M.,
ed., Proceedings of the 20th International Joint Conference
on Artificial Intelligence, 1840–1845. AAAI Press / Inter-
national Joint Conference on Artificial Intelligence.
Davis, M.; Logemann, G.; and Loveland, D. 1962. A
machine program for theorem proving. Communications
of the ACM 5:394–397.
Dowling, W. F., and Gallier, J. H. 1984. Linear-time al-
gorithms for testing the satisfiability of propositional Horn
formulae. Journal of Logic Programming 1(3):267–284.
Ernst, M.; Millstein, T.; and Weld, D. S. 1997. Automatic
SAT-compilation of planning problems. In Pollack, M.,
ed., Proceedings of the 15th International Joint Conference
on Artificial Intelligence, 1169–1176. Morgan Kaufmann
Publishers.
Geffner, H. 2004. Planning graphs and knowledge com-
pilation. In Dubois, D.; Welty, C. A.; and Williams, M.-
A., eds., Principles of Knowledge Representation and Rea-
soning: Proceedings of the Ninth International Conference
(KR 2004), 662–672. AAAI Press.
Gerevini, A., and Schubert, L. 1998. Inferring state con-
straints for domain-independent planning. In Proceedings
of the 15th National Conference on Artificial Intelligence
(AAAI-98) and the 10th Conference on Innovative Applica-
tions of Artificial Intelligence (IAAI-98), 905–912. AAAI
Press.
Kautz, H., and Selman, B. 1992. Planning as satisfiability.
In Neumann, B., ed., Proceedings of the 10th European
Conference on Artificial Intelligence, 359–363. John Wiley
& Sons.

Kautz, H., and Selman, B. 1996. Pushing the envelope:
planning, propositional logic, and stochastic search. In
Proceedings of the 13th National Conference on Artificial
Intelligence and the 8th Innovative Applications of Artifi-
cial Intelligence Conference, 1194–1201. AAAI Press.
Li, C. M., and Anbulagan. 1997. Heuristics based on unit
propagation for satisfiability problems. In Pollack, M., ed.,
Proceedings of the 15th International Joint Conference on
Artificial Intelligence, 366–371. Morgan Kaufmann Pub-
lishers.
Marques-Silva, J. P., and Sakallah, K. A. 1996. GRASP:
A new search algorithm for satisfiability. In Proceedings
of International Conference on Computer-Aided Design,
220–227.
Rintanen, J.; Heljanko, K.; and Niemelä, I. 2006. Plan-
ning as satisfiability: parallel plans and algorithms for plan
search. Artificial Intelligence 170(12-13):1031–1080.
Rintanen, J. 1998. A planning algorithm not based on
directional search. In Cohn, A. G.; Schubert, L. K.; and
Shapiro, S. C., eds., Principles of Knowledge Representa-
tion and Reasoning: Proceedings of the Sixth International
Conference (KR ’98), 617–624. Morgan Kaufmann Pub-
lishers.
Subbarayan, S., and Pradhan, D. K. 2005. NiVER: Non in-
creasing variable elimination resolution for preprocessing
SAT instances. In Hoos, H. H., and Mitchell, D. G., eds.,
Theory and Applications of Satisfiability Testing, 7th Inter-
national Conference, SAT-2004. Vancouver, BC, Canada,
May 10-13, 2004. Revised selected papers, number 3542
in Lecture Notes in Computer Science, 276–291. Springer-
Verlag.

