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Abstract

The scalability of SAT to very large problems has been
achieved in the last ten years, due to substantially improved
encodings, SAT solvers, and algorithms for scheduling the
runs of SAT solvers. This has lead to SAT-based planners
that are dramatically different from the earliest implementa-
tions based on the late 1990ies technology. We discuss a SAT-
based planning system that implements modernized versions
of all components of earliest SAT-based planners.

Introduction
During the last decade, SAT, the prototypical NP-complete
problem of testing the satisfiability of the formulas in the
classical propositional logic (Cook 1971), has emerged, due
to dramatically improved SAT solvers (Marques-Silva and
Sakallah 1996; Moskewicz et al. 2001) as a practical lan-
guage for representing hard combinatorial search problems
and solving them, in areas as diverse as Model-Checking
(Biere et al. 1999), FPGA routing (Wood and Rutenbar
1998), test pattern generation (Larrabee 1992), and diagno-
sis (Smith et al. 2005; Grastien et al. 2007).

Planning as Satisfiability, which enjoyed a lot of atten-
tion in the late 1990s after the works by Kautz and Selman
(1996), has re-emerged as a strong approach to planning due
to substantially improved problem encodings, SAT solvers,
and search strategies. The main application is the classical
planning problem (Rintanen 2012b), but the same ideas can
be adapted to more complex forms of planning, or classi-
cal planning can be used as a subprocedure in algorithms
for more general problems. These investigations have only
started, with first breakthroughs obtained in temporal plan-
ning (Rankooh and Ghassem-Sani 2013).

These developments are not surprising, considering that
the classical planning problem is equivalent to the simplest
model-checking and reachability problems in Computer-
Aided Verification, and that SAT and its extensions such as
SAT modulo Theories (SMT) have had great successes in
that area in the past ten years, including wide industry adop-
tion.
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In this paper, we will first give a brief description of the
Planning and Satisfiability approach, discuss the issues crit-
ical to its time and space complexity in practice, and explain
the factors that separate the state of the art now and ten years
ago. Specifically, we discuss two critical issues of SAT-
based planning: potentially high memory requirements, and
the necessity and utility of guaranteeing that plans have the
shortest possible horizon length (parallel optimality).

The planning system Madagascar (also called M, Mp or
MpC depending on its configuration) implements several
of the innovations in planning with SAT, including com-
pact and efficient encodings based on ∃-step plans (Rinta-
nen, Heljanko, and Niemelä 2006), parallelized/interleaved
search strategies (Rintanen 2004; Rintanen, Heljanko, and
Niemelä 2006), powerful invariant algorithms (Rintanen
2008b), SAT heuristics specialized for planning (Rintanen
2010b; 2010a), and data structures supporting parallelized
SAT solving with very large problem instances (Rintanen
2012a).

Background
A classical planning problem is defined by a set F of facts
(or state variables) the valuations of which correspond to
states, one initial state, a set A of actions (that represent the
different possibilities of changing the current state), and a
goal which expresses the possible goal states in terms of the
facts F . A solution to the planning problem is a sequence of
actions that transform the initial state step by step to one of
the goal states.

The classical planning problem can be translated into a
SAT problem of the following form.

Φt = I ∧ T (0, 1) ∧ T (1, 2) ∧ · · · ∧ T (t− 1, t) ∧G

Here I represents the unique initial state, expressed in terms
of propositional variables f@0 where f ∈ F is a fact, and
G represents the goal states, expressed in terms of proposi-
tional variables f@t, f ∈ F . The formulas T (i, i + 1) rep-
resent the possibilities of taking actions between time points
i and i+ 1. These formulas are expressed in terms of propo-
sitional variables f@i and f@(i+ 1) for f ∈ F and a@i for
actions a ∈ A.

The formula Φt is satisfiable if and only if a plan with
t time points exists. Planning therefore can be reduced to



a sequence of satisfiability tests. The effectiveness of the
planner based on this idea is determined by the following.

1. The form of the formulas T (i, i+ 1).

2. The way the values of t are chosen.

3. The way the SAT instances Φt are solved.

In the rest of the paper we will discuss each of these com-
ponents of an efficient and scalable planning system that
uses SAT.

Encodings of T (i, i+ 1)
The encoding of transitions from i to i + 1 as the formu-
las T (i, i + 1) determines how effectively the satisfiabil-
ity tests of the formulae Φt can be performed. The lead-
ing encodings are the factored encoding of Robinson et al.
(2009), and the ∃-step encoding of Rintanen et al. (2006).
Both of them use the notion of parallel plans, which allow
several actions at each time point and hence time horizons
much shorter than the number of actions in a plan. The
encoding by Robinson et al. is often more compact than
that by Rintanen et al., but the latter allows more actions
in parallel. Both of these encodings are often more than an
order of magnitude smaller than earlier encodings such as
those of Kautz and Selman (1996; 1999), and also substan-
tially more efficient (Rintanen, Heljanko, and Niemelä 2006;
Sideris and Dimopoulos 2010). This is due to the very large
quadratic representation of action exclusion in early encod-
ings. Rintanen et al. (2006) and Sideris and Dimopoulos
(2010) show that eliminating logically redundant mutexes
or improving the quadratic representation to linear dramati-
cally reduces the size of the formulas.

The ∃-step plans allow more actions in parallel than
the earlier most popular GraphPlan-style (Blum and Furst
1997) ∀-step plans (Dimopoulos, Nebel, and Koehler 1997;
Rintanen, Heljanko, and Niemelä 2006). Further, the weaker
conditions on parallelism for ∃-step plans often allow leav-
ing out all constraints on the parallelity of actions, which
further leads to smaller formulas than with ∀-step plans
(Rintanen, Heljanko, and Niemelä 2006). Both factors,
shorter horizon lengths and smaller encodings for action par-
allelism, substantially help improving the scalability of SAT-
based planning.

In addition to constraints that are necessary for the cor-
rectness of planning, there are redundant constraints that
logically follow from the necessary constraints, but that are
still useful because they make such implicit facts explicit
that would otherwise not be effectively inferred by the SAT
solver (Rintanen 2008a).

Our planners use invariants (binary mutexes) to speed up
SAT solving. Mutexes were first introduced in the Graph-
Plan planner (Blum and Furst 1997) for pruning a backward-
chaining search, and they were soon noticed to be important
also for SAT-based planning (Kautz and Selman 1996). The
main reason for the utility of mutexes in planning is the rep-
resentation of multi-valued state variables as sets of Boolean
variables. That multi-valued state variables cannot be repre-
sented directly is a limitation of the PDDL language used by
many planners.

We use a powerful algorithm for finding 2-literal invari-
ants (Rintanen 2008b). The algorithm uses a fixpoint com-
putation similarly to GraphPlan’s planning graph construc-
tion, but works for a far more general input language that
includes arbitrary disjunctions and conditional effects.

Scheduling the Solution of the SAT Instances
Kautz and Selman (1996) proposed testing the satisfiabil-
ity of Φt for different values of t = 0, 1, 2, . . . sequentially,
until a satisfiable formula is found. This strategy is asymp-
totically optimal if the t parameter corresponds to the plan
quality measure to be minimized, as it would with sequential
plan encodings that allow at most one action at a time. How-
ever, for the parallel ∃-step and ∀-step plans optimality of
the t parameter is meaningless because the parallelism does
not correspond to the actual physical possibility of taking
actions is parallel. For STRIPS, Graphplan-style parallelism
exactly matches the possibility of totally ordering the ac-
tions to a sequential plan (Rintanen, Heljanko, and Niemelä
2006). Hence the parallelism can be viewed as a form of par-
tial order reduction (Godefroid 1991), the purpose of which
is to avoid considering all n! different ordering of n indepen-
dent actions, as a way of reducing the state-space explosion
problem. In this context the t parameter often only provides
a weak lower bound on the sequential plan length. So if the
minimality of t does not have a practical meaning, why min-
imize it? The proof that t is minimal was the most expensive
part of the runs of early SAT-based planners.

More complex algorithms for scheduling the SAT tests for
different t have been proposed and shown both theoretically
and in practice to lead to dramatically more efficient plan-
ning, often by several orders of magnitude (Rintanen 2004;
Zarpas 2004; Streeter and Smith 2007). These algorithms
avoid the expensive proofs of minimality of the parallel plan
length, and in practice still lead to plans of comparable qual-
ity to those with the minimal parallel length. The most effec-
tive implementations of these algorithms solve several SAT
problems (for different horizon lengths) in parallel.

Algorithm B (Rintanen 2004) runs an unlimited number
of SAT solvers at varying rates, solving an sequence of SAT
problems for formula Φ0,Φ1,Φ2, . . .. Each SAT solver gets
a fraction of the CPU that is proportional to γi, for some
constant γ that satisfies 0 < γ ≤ 1 (we have very success-
fully used γ = 0.9). Hence each SAT test for Φi gets γ times
the CPU the test for Φi−1 gets. Most of the CPU is dedicated
to short horizon lengths, but also longer horizon lengths get
some CPU. In real-world implementations of the algorithm
SAT solvers are started only for Φi for which an amount of
CPU time is allocated that exceeds some positive threshold
value. Our planners in their default configuration also limit
the maximum number of SAT instances solved concurrently
to 20, with new solvers started when earlier instances are
found unsatisfiable.

Figure 1 depicts the gap between the longest horizon
length with a completed unsatisfiability test and the hori-
zon length for the found plan for the Mp planner and for
all the instances considered by Rintanen (2010b). The dots
concentrate in the area below 50 steps, but outside this area
there are typically an area of 30 to 50 horizon lengths for
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Figure 1: Lower and upper bounds of plan lengths

which the SAT test was not completed, in the vast majority
of cases because their difficulty well exceeded the capabil-
ities of current SAT solvers. This explains why the use of
the parallel strategies which avoid the expensive (but unnec-
essary) parallel optimality proofs are essential for efficient
planning.

SAT Solving
Our planners are based on our own highly optimized SAT
solver that implements the Conflict-Driven Clause Learning
algorithm (Marques-Silva and Sakallah 1996; Moskewicz et
al. 2001), together with many improvements more or less
universally employed in best general-purpose SAT solvers,
including phase-saving (Pipatsrisawat and Darwiche 2007),
Luby-restarts (Huang 2007), and clause deletion based on
literal blocking distance (Audemard and Simon 2009).

In addition to the standard VSIDS heuristic (Moskewicz
et al. 2001), our SAT solver implements a planning-specific
heuristic which in many cases fares much better than VSIDS
on the standard benchmark sets (Rintanen 2012b). The
heuristic simulates backward-chaining to identify relevant
action variables to be used as decision variables, and lever-
ages the current partial assignment maintained by the CDCL
algorithm to focus on the most critical relevant actions.
However, standard SAT solvers with VSIDS-style heuristics
continue to be the strongest method for solving many combi-
natorially hard planning problems with relatively short hori-
zon lengths (Porco, Machado, and Bonet 2011; Rintanen
2012b).

In addition to a planning-specific decision variable heuris-
tic, our SAT solver employs a specialized representation
for binary clauses (Rintanen 2012a) targeting planning
and related state-space search applications such as model-
checking. In all standard encodings of planning as SAT, the
transition relation formula is replicated multiple times, with

planner heuristic scheduling strategy
M VSIDS B (geometric rates, linear horizons)
Mp bwd B (geometric rates, linear horizons)
MpC bwd C (constant rates, exponential horizons)

Table 1: Planner configurations

different time indices. Our SAT solver includes only one
copy of all the binary clauses in the transition relation for-
mula, and handles the varying time indices inside the unit
propagation algorithm, with very low overhead. The rep-
resentation often reduces the memory consumption of the
planner to half or one third, and due to reduced cache misses
also SAT solving runtimes are often reduced substantially
(Rintanen 2012a).

Versions of the Planner
There is no universal best configuration for our planner (sim-
ilarly to any other planning method, or combinatorial search
method in general), and we have introduced three major con-
figurations which differ in terms of the heuristic and the SAT
solver scheduling strategy. These configurations are listed in
Table 1.

Planner M uses the standard VSIDS heuristic, limits
search to plan lengths 5i for integers i ≥ 1, and runs the SAT
solvers at varying rates according to the geometric strategy
B (Rintanen 2004; Rintanen, Heljanko, and Niemelä 2006).
In addition to better encodings, the main difference to early
planners that used SAT is the geometric B strategy, which
can – in the worst case – be slower than the sequential strat-
egy used by Kautz and Selman only by a small constant fac-
tor, but may be – and often in practice is – arbitrarily much
faster.

Planner Mp is like M except that it replaces VSIDS with
the heuristic based on backward-chaining which fares ex-
ceptionally well with standard planning benchmarks (Rinta-
nen 2010b; 2012b), but often fares worse with smaller but
combinatorially harder instances.

Planner MpC is like Mp but it replaces the horizon lengths
5i by horizon lengths 5(

√
2)i, with all SAT solvers run at

the same rate. Mp solves few problem instances with plans
much longer than 200 steps due to the difficulty of proving
inexistence of long plans and limits on the number horizon
lengths considered simultaneously. MpC considers longer
horizon lengths successfully, up to some thousands of steps,
but beyond that it is severely limited by the availability of
memory. It sometimes performs worse than Mp when the
horizon lengths are short.

Conclusions
We have discussed a series of developments that have im-
proved the efficiency and scalability of SAT-based planners
dramatically since the early planners from the 1990ies and
early 2000s, and that are all implemented in the Madagascar
planner.

The single most important improvement – in terms of per-
formance and scalability – was the adoption of parallelized



strategies that do not require the (unnecessary) proof of par-
allel optimality (Rintanen 2004; 2009). This improvement,
together with compact encodings of parallel ∃-step plans
(Rintanen, Heljanko, and Niemelä 2004), as implemented
in the planner M, lifts the efficiency and scalability of SAT-
based planning close to the level of the best modern planners
that use other search paradigms, and clearly past planners
prior to about 2004.

Further improvements for standard benchmark problems
have been obtained by replacing general-purpose SAT-solver
heuristics, such as VSIDS, by planning-specific ones which
help focusing on actions that are relevant and which adapt
to the current state of the SAT solving process (Rintanen
2012b), and with various smaller improvements. Finally, of
course, a substantial difference to planning as SAT has been
the steady and at times dramatic improvement of general-
purpose SAT solving technology.

Existing techniques not used by our planners include the
use of factored problem encodings for parallel plans (Robin-
son et al. 2009). With many problems these encodings
have outperformed best non-factored encodings, but, as far
as we know, the impact of factored encodings for example
with parallelized SAT solving strategies (which are critical
for high-performance planning) has not been investigated.
Overall, the differences of encodings (which were the almost
exclusive focus in research on planning with SAT for very
long) have a smaller impact on the performance of a SAT-
based planner than for example the SAT-solver scheduling
strategies. Another method that is not currently used by our
planners is approximate plan length upper bounds (Rintanen
and Gretton 2013), which would help focusing the search on
the horizon lengths most likely to yield plans quickly. The
existing method sometimes yields practically significant up-
per bounds, based on SCCs of dependency graphs, but in
many cases decomposition to SCCs is too coarse to be use-
ful. The method is promising, but tighter bounds would be
needed to have a substantial impact on planner performance
and memory usage.

In summary, the current state of the art in Planning as
SAT is characterized by developments in at least half a dozen
different planner components. In many cases the improve-
ments in the components have been orthogonal (for example,
encodings, SAT solving algorithms, and scheduling of SAT
solvers). Understanding dependencies between the different
components, most notably between the encodings and algo-
rithms for the SAT problem, would allow further progress
in SAT-based methods for planning and state-space search
problems in general.
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