
A Planning Algorithm not based on Directional Search

Jussi Rintanen
Universität Ulm

Fakultät für Informatik
Albert-Einstein-Allee

D-89069 Ulm, Germany

Abstract

The initiative in STRIPS planning has recently
been taken by work on propositional satisfiabil-
ity. Best current planners, like Graphplan, and
earlier planners originating in the partial-order or
refinement planning community have proved in
many cases to be inferior to general-purpose sat-
isfiability algorithms in solving planning prob-
lems. However, no explanation of the success of
programs like Walksat or relsat in planning has
been offered. In this paper we discuss a simple
planning algorithm that reconstructs the planner
in the background of the SAT/CSP approach.

1 INTRODUCTION

Many of the recent interesting results in AI planning did not
originate in traditional planning research, but in work on
algorithms for checking the satisfiability of propositional
formulae. STRIPS planning problems have been used as
benchmarks to test SAT algorithms based on greedy local
search [Kautz and Selman, 1992; Kautz and Selman, 1996],
and new developments [Bayardo, Jr. and Schrag, 1997]
of the well-known Davis-Putnam procedure. As a con-
tribution to planning research, these SAT algorithms have
proved to be in many cases orders of magnitude faster plan-
ners [Kautz and Selman, 1996] than algorithms specifically
designed for planning, thereby pointing out the possibility
of dramatic improvements and new interesting lines of re-
search.

Planning by satisfiability was first investigated by Kautz
and Selman [1992] by means of a stochastic search algo-
rithm. In this approach, problem instances are translated to
sets of propositional formulae that include frame axioms,
formulae describing the effects the operators have, and
facts that hold in the initial and goal state. The satisfiability
algorithm finds an assignment of truth-values to the propo-

sitions, and a plan is obtained from the propositions that
correspond to operator applications. Interestingly, there are
several ways to express the frame axioms and to make the
set of formulae more concise, which has led to a thread
of research on the quantitative properties of different en-
codings [Kautz and Selman, 1996; Kautz et al., 1996;
Ernst et al., 1997].

Parallel to advances in solving satisfiability problems by
stochastic search, improvements to the well-known Davis-
Putnam procedure [Davis et al., 1962] have been discov-
ered. State-of-the-art implementations include Crawford’s
[1996] tableau and Freeman’s [1995] Posit. Techniques
that have made it possible to solve planning problems of the
same difficulty with the Davis-Putnam procedure as with
Walksat [Kautz and Selman, 1996] include lookback tech-
niques from constraint satisfaction research [Bayardo, Jr.
and Schrag, 1997] and heuristics based on unit resolution
[Li and Anbulagan, 1997].

In this paper, we directly apply techniques from satisfiabil-
ity algorithms to STRIPS planning, bypassing the route via
translations to SAT. This paper, however, is not about sat-
isfiability testing, as the algorithm we present can be and
should be completely understood in terms of planning per
se. It is important to devise this algorithm for several rea-
sons. The functioning of SAT algorithms when they are
solving planning problems has not been analyzed in earlier
research, which has kept the reason for the success of these
algorithms from being widely known. For example, the
role of various details of problem encodings, like the use of
invariants, has been given only a quantitative explanation as
a factor that improves the runtimes of SAT algorithms. Fur-
thermore, it is important to identify the boundary between
satisfiability testing and planning. We believe that there
are a lot of techniques that can improve the performance
of planning algorithms, but that are not likely to be discov-
ered by research on propositional satisfiability. To find the
boundary between the two fields and to identify lines of re-
search relevant to planning, it is necessary to understand
what a SAT algorithm is able to do when it is trying to find



a plan.

2 WORKINGS OF A SAT-BASED
PLANNER

In this section we illustrate what takes place when satisfi-
ability algorithms like the Davis-Putnam procedure solve
a planning problem represented as propositional formu-
lae. The representation of planning as satisfiability prob-
lems [Kautz and Selman, 1992; Kautz et al., 1996] consists
of the frame axioms, axioms describing the preconditions
and effects of operators, and formulae describing the initial
state and the goal. We take as an example the axiomatiza-
tion from [Kautz et al., 1996] with explanatory frame ax-
ioms [Haas, 1987; Schubert, 1990] and parallel operations.

For a fluent l that can be made true by operators o1, . . . , on,
explanatory frame axioms are

(lt ∧ lt+1) → (ot
1 ∨ · · · ∨ ot

n) (1)

where t ∈ {0, . . . , f} is an integer referring to a point
of time and f is the plan length. An operator applica-
tion implies its preconditions and postconditions, that is, if
the preconditions of o are l1, . . . , ln and the postconditions
l′1, . . . , l

′
n′ , then we have the axiom

ot → (lt1 ∧ · · · ∧ ltn ∧ l′t+1
1 ∧ · · · ∧ l′t+1

n′ ). (2)

Fluents l1, . . . , ln true at the initial state are encoded sim-
ply as the unit clauses l01, . . . , l

0
n, and the goal fluents

g1, . . . , gm as the unit clauses gf
1 , . . . , gf

m. Finally, there
are axioms that prevent the simultaneous application of op-
erators that are mutually dependent.

Most of the inferences in the Davis-Putnam procedure
when it is solving a planning problem are based on unit
resolution and unit subsumption. From a unit clause ot the
preconditions at t and postconditions at t + 1 are obtained.
An important pattern of inference is started by unit clauses
¬ot. First, clauses from axioms in Eq. 2 are deleted by
unit subsumption. Second, and more importantly, unit res-
olution together with frame axioms (Eq. 1) may force the
truth-value of a fluent to persist across a step of time or
to force the application of an operator. If ¬ot was the last
literal in the consequent we have lt ∨ lt+1, that is, if the
fluent l is false at t then it is false also at t + 1. Depending
on the presence of lt or lt+1, this may yield lt+1 or lt. If
ot was next to the last literal in the consequent and we al-
ready had lt and lt+1, unit resolution forces the application
of the remaining operator o′ at t. Similarly, a unit clause
representing a fluent together with a frame axiom 1 may
propagate its truth-value one step backward or forward or
force an operator application.

The above inference patterns are very powerful in making
forward inferences from the initial state. As the initial state

in STRIPS planning determines the truth-values of all flu-
ents, unit resolution directly lets us conclude which opera-
tors are not applicable at time 0 because their preconditions
are false. For many fluents this – like shown above – allows
to infer their persistence, which in turn yields the inappli-
cability of other operators at time 1, and so on.

After unit simplifications, the Davis-Putnam procedure
does a case analysis on a literal l, in one case adding l to the
clause set and in the other l, in both cases enabling further
inferences by unit simplifications.

The algorithms by Kautz and Selman [1992; 1996] based
on greedy local search work quite unlike the Davis-Putnam
procedure. These algorithms start from a randomly chosen
truth-assignment that is repeatedly modified by reversing
truth-values of literals so that more clauses are satisfied.
However, flips roughly corresponding to unit simplifica-
tions are likely to be made by Walksat as they increase the
number of satisfied clauses.

3 THE ALGORITHM

In this section we give a new algorithm for STRIPS plan-
ning. The algorithm is similar in structure to the Davis-
Putnam procedure for propositional satisfiability. Each re-
cursive call consists of applying a set of efficient inference
rules, followed by a case analysis. The main procedure of
the algorithm, given in Figure 3 uses a plan length as a pa-
rameter, and it is iteratively called for all plan lengths start-
ing from 0 until a solution is found. Currently we employ
no method for detecting insolvability, so the planner runs
forever on problem instances that have no solution. The
proofs of soundness and completeness of the algorithm are
straightforward.

A distinguishing characteristic of the algorithm is that –
unlike most earlier planning algorithms – the search does
not start from the goal state and proceed towards the initial
state. Instead, operator applications at any points of time
may be chosen for the case analysis that makes the search
tree branch. In one of the subtrees the operator is applied,
and in the other it is not. This is in strong contrast with
Graphplan [Blum and Furst, 1995] that generates a branch
for every minimal set of operators that produces the cur-
rent subgoal, and with algorithms like SNLP [McAllester
and Rosenblitt, 1991] that branch on possible ways of ex-
tending a partially ordered plan so that a threat is removed
or an operation in the incomplete plan has its precondition
fulfilled.

An inference technique from satisfiability testing we have
found useful is failed literal detection, proposed by Free-
man [1995] and investigated by Li and Anbulagan [1997].
We discuss it in the section on invariants where we show
that it enables backward inferences from the goal state.



procedure plan()
allocate space for local arrays op’ and prop’;
if applyrules() then return false; end if
if op[t,o] = Unknown for no t,o then return true; end if

failedLiteralDetection:
foreach operator o and time t such that op[t,o] = Unknown do

op’ := op; prop’ := prop;
op[t,o] := True;
if applyrules() then (* Contradiction was derived. *)

op := op’; prop := prop’;
op[t,o] := False;
if applyrules() then return false;

else
if score for op,prop improves the previous best score
then t1 := t; o1 := o; p1 := 1; end if
op := op’; prop := prop’;
op[t,o] := False;
if applyrules() then (* Contradiction was derived. *)

op := op’; prop := prop’;
op[t,o] := True;
applyrules();

else
if score for op,prop improves the previous best score
then t1 := t; o1 := o; p1 := 0; end if
op := op’; prop := prop’;

end if
end if

end foreach
if operator applications were derived
then goto failedLiteralDetection end if;
op’ := op; prop’ := prop;
if p1 = 1 then op[t1,o1] := True else op[t1,o1] := False; end if
if plan() then return true; end if
op := op’; prop := prop’;
if p1 = 1 then op[t1,o1] := False else op[t1,o1] := True; end if
return plan();

end

Figure 1: The planning algorithm

This technique is also the basis for selecting an operator
for branching. Failed literal detection proceeds by attempt-
ing to derive literals by proof-by-contradiction: assume the
literal is true, and if contradiction can be derived by unit
simplifications, conclude the negation of the literal, other-
wise estimate the usefulness of branching on the literal in
terms of the number of short clauses it yielded. In our case,
we assume that a certain operator is or is not applied at a
certain moment of time, and for branching we select the op-
erator (in)application that reduces the number of unknown
operation applications and proposition values most.

The main procedure of the algorithm is given in Figure 3.
Before calling it, the elements of arrays op and prop are
initialized to Unknown, prop[0,p] for all p is assigned
the truth-value of proposition p in the initial state, and sim-
ilarly for prop[len,p] and the goal state, where len
is the plan length currently considered. If the procedure
returns true, a plan can be read from the array op.

The function applyrules performs the following infer-

ences and returns true if a contradiction was detected, that
is, an assignment of True to an element of op or prop that
had value False was attempted, or vice versa.

1. If operator o is assigned true at t, then make the pre-
conditions of o true at t and the postconditions true at
t + 1.

2. If all operators with l in the postcondition are assigned
false at t, then do the following. If l is false at t then
make l false at t + 1. If l is true at t + 1 then make l
true at t.

3. If operator o is assigned true at t, assign false at t to
all operators that make the precondition of o false, and
assign false at t to all operators the precondition of
which is made false by o.

The second rule encodes the assumption that only oper-
ations change the value of propositions. The third rule
makes the planner a partial-order planner: operators that
can be executed in any order without affecting the outcome
may be executed simultaneously.

Additional rules are used for speeding up inferences – espe-
cially to reduce the need for failed literal detection which
is expensive – even though they are not required for the
correctness of the algorithm. For example, if a proposi-
tion changes truth-value at time t and all but one operator
making the change have been chosen to be not applied, the
remaining operator has to be applied. And if the precon-
dition is false at t or a postcondition is false at t + 1, then
the operator is not applied at t. It is easy to verify that
these inferences correspond to the ones sanctioned by unit
resolution in planners based on SAT, for example with the
encoding in [Kautz et al., 1996] with parallel operations
and explanatory frame axioms.

Note that like the Davis-Putnam procedure, as long as case
analysis is not needed, the algorithm runs in polynomial
time.

As an alternative to doing failed literal detection and
branching on operator applications, it is also possible to
do it on propositions, or both operator applications and
propositions. What is the best alternative depends on the
properties of the class of planning problems to be solved.
Doing failed literal detection on both operator applications
and propositions of course prunes the search space at least
as much as the other alternatives, but it is more expensive.

4 INVARIANTS

The basic algorithm given in the previous section sanctions
most of the desired inferences from the initial state. For
example in the blocks world domain, if there is a stack of n



blocks on top of block A, we can infer that after n moves A
is still in its initial position. We would like to make similar
inferences starting from the goal state. For example, if A
is on top of B and B is on top of C at time t, then B is
on top of C at t − 1. To make this inference, we need to
show that it is not possible to move B on top of C at t− 1.
This inference uses failed literal detection. Assume that B
is moved on top of C at t − 1. The precondition of this
operation is that B and C are clear at t− 1. The moving of
A on B cannot be done in parallel with the move of B on
C because the former makes the precondition of the latter
false. Hence A cannot be moved on B at t − 1. Therefore
A is on B at t − 1. But then B cannot be clear at t − 1,
which contradicts the precondition of moving B on C.

What is missing in the algorithm in the previous section is
the last step that whenever A is on B, B cannot be clear.
This is a fact that is not explicit in the facts that A is on B
and B is on C. The goal state and many intermediate states
are incomplete in that they do not specify the truth-values
of all propositions. To extend the state descriptions we need
invariants derived from the operators and the initial state1.
In the above example the relevant invariant says that either
B is not clear or A is not on B. Most of the work on SAT-
based planning has used this kind of invariants to speed up
plan search [Kautz and Selman, 1992; Kautz and Selman,
1996]. Invariants (usually incompletely) characterize the
set of states reachable from the initial state.

The invariants used in the algorithm consist of 2-literal
clauses, which is the relevant form of invariants in most of
the benchmark domains, like the blocks world, the rocket
domain, and the logistics domain. In the blocks world
the only invariants that cannot be represented as 2-literal
clauses are those that state that the on relation is acyclic
and if a block is not clear then some block has to be on top
of it. Invariants are incorporated in the algorithm as the fol-
lowing rule: if l ∨m is an invariant and l becomes False at
t, then make m True at t.

4.1 COMPUTATION OF INVARIANTS

We have devised an algorithm for computing 2-literal in-
variants. Its structure is similar to the invariant algorithms
in computer-aided verification [Bensalem et al., 1996]. The
algorithm starts with a candidate invariant Q′, consisting of
all the 2-literal clauses true in the initial state, and weaken-
ing it repeatedly by removing clauses that are made false
by an operator application. This is formalized as the com-
putation of fixpoints of monotonic functions RO. The def-
inition of RO for a set of operators O = {o1, . . . , on} is as

1The mutual exclusion relations on literals in Graphplan
[Blum and Furst, 1995] are a superset of the 2-literal invariants.

follows.

RO(V ) = Fo1(Fo2(· · ·Fon
(V ) · · ·))

F〈p,e〉(V ) =

 V, if V ∪ p |= ⊥, and otherwise
{a ∨ b ∈ V |¬a 6∈ e or b ∈ U(V, p, e),

¬b 6∈ e or a ∈ U(V, p, e)}
U(V, p, e) = {l ∈ L|V ∪ p |= l}\{l|l ∈ e} ∪ e

The function Fo takes a set of clauses, and deletes the ones
the truth of which the operator o does not preserve. The
function U performs an update. It computes the set of lit-
erals U(V, p, e) that are true in all states that result from
changing the literals in e true in states that satisfy V and p,
where V is a set of 2-literal clauses. Because RO is mono-
tonic and the universe is finite, there is a fixpoint of R0

that is obtained by a finite number n ≥ 0 of iterations as
Rn

O(V0) = Rn+1
O (V0). Here V0 = {a ∨ b|a ∈ I, b ∈ L}

consists of the 2-literal clauses true in the initial state I and
L is the set of all literals.

The algorithm does not compute all 2-literal invariants.
This is because a 2-literal representation Ri

O(V0) of a sub-
set of reachable states is not accurate (s |= Ri

O(V0) does
not guarantee that s is reachable), and Fo considers appli-
cations of o in unreachable states that result in unreachable
states where some 2-literal invariants are violated. In many
problem domains, for example in the ones mentioned in
this paper, this does not happen.

Lemma 4.1 For any set of operators O = {o1, . . . , on},
the functions Foi , and consequently the function RO, are
monotonic.

Lemma 4.2 Let p and e be sets of literals, V be a set of
2-literal clauses, s be a model such that s |= V ∪ p, and
s′ a model obtained from s by setting the literals in e true.
Then s′ |= U(V, p, e).

Lemma 4.3 For all states s and sets of 2-literal clauses
V such that s |= V and s′ is a successor of s (under the
application of an operator in O), s′ |= RO(V ).

Proof: Now s |= p and s′ = s\{l|l ∈ e} ∪ e for some op-
erator 〈p, e〉. Let a∨ b be any member of RO(V ). Because
RO(V ) ⊆ V and s |= V , s |= a ∨ b. Assume ¬a 6∈ e
and ¬b 6∈ e. Clearly s′ |= a ∨ b. So assume ¬a ∈ e or
¬b ∈ e. Because of symmetry it suffices to consider the
case ¬a ∈ e. Because a ∨ b ∈ RO(V ), for all 〈p′, e′〉 ∈ O
such that V ∪ p′ 6|= ⊥, b ∈ U(V, p′, e′). This holds also for
p′ = p, e′ = e. By Lemma 4.2 s′ |= U(V, p, e), and hence
s′ |= b. Therefore s′ |= RO(V ). 2

Theorem 4.4 Let V be a fixpoint of RO such that V ⊆
V0. For all states s reachable from the initial state I with
applications of operators in O, s |= V .



0123456 012345
atR2JFK T FFFFF loadR1R2JFK FFFFF
atR1JFK T FFFFF loadR1R2London FFF FF
inR1R2 F F F loadR1R2Paris FFFFFF

atR2London FF T FF loadR2R1JFK FFFFF
atR1London FF T FF loadR2R1London FFF FF
atR2Paris FFFFF T loadR2R1Paris FFFFFF
atR1Paris FFFFF T unloadR1R2JFK FFFFFF

inR2R1 F F F unloadR1R2London FF FFF
fuelR1 TT FF unloadR1R2Paris FFFFF

connJFKLondon TTTTTTT unloadR2R1JFK FFFFFF
connJFKParis FFFFFFF unloadR2R1London FF FFF

connLondonJFK FFFFFFF unloadR2R1Paris FFFFF
connLondonParis TTTTTTT moveR1JFKLondon F FFFF

connParisJFK FFFFFFF moveR1JFKParis FFFFFF
connParisLondon FFFFFFF moveR1LondonJFK FFFFFF

fuelR2 TT FF moveR1LondonParis FFFF F
moveR1ParisJFK FFFFFF

moveR1ParisLondon FFFFFF
moveR2JFKLondon F FFFF
moveR2JFKParis FFFFFF

moveR2LondonJFK FFFFFF
moveR2LondonParis FFFF F

moveR2ParisJFK FFFFFF
moveR2ParisLondon FFFFFF

Figure 2: An intermediate stage in finding a plan

Proof: Because by Lemma 4.1 RO is monotonic, there is a
fixpoint V of RO such that V ⊆ V0. Because s is reach-
able from I , there is a finite sequence o1, o2, . . . , om of op-
erators in O and states s0, s1, . . . , sm such that I = s0,
s = sm and si is obtained from si−1 by the applica-
tion of oi. Because I |= V0, by repeated applications of
Lemma 4.3 si |= Ri

O(V0) for all i ∈ {0, . . . ,m}. Be-
cause V ⊆ Ri

O(V0), si |= V for all i ∈ {0, ...,m}. Hence
s = sm |= V . 2

The contents of planning graphs in GraphPlan resemble the
intermediate stages in the computation of invariants in our
algorithm.

5 AN EXAMPLE

Figure 2 illustrates the solution of a problem from the
rocket domain of [Blum and Furst, 1995]. Initially two
rockets are at JFK. In the goal state the rockets are in Paris.
Flights are possible only from JFK to London and from
London to Paris. The algorithm detects the inexistence of
plans of lengths 1 to 5 without search only by using the
easy polynomial-time inferences. For plan length 6, when
the algorithm has reached its first branching point, the state
and the known operations are as shown in Figure 2. The re-
maining possibilities represent the two possible plans, load
one of the rockets into the other, fly to London (consuming
the fuel from the rocket), unload, load the rocket with no
fuel into the one with fuel, fly to Paris, and unload again.

Once the planner decides (arbitrarily) to try to load R1 into
R2 at JFK at time 0, the rest of the operations are forced and
no contradictions are obtained: R2 has to be flown to Lon-

don, R1 has to be unloaded from R2, R2 has to be loaded
into R1, R1 has to be flown to Paris, and finally R2 has
to be unloaded from R1. On the same problem Graphplan
generates a search tree with several nodes, because it does
not infer anything from the goal state.

6 EXPERIMENTAL RESULTS AND
RELATED WORK

We have implemented the algorithm in C, and evaluated
it on a number of examples. Tables 1 and 2 lists the run-
times (in seconds) of our planner (the R column), Blum and
Furst’s Graphplan [1995], and the satisfiability programs
Walksat [Kautz and Selman, 1996], satz [Li and Anbula-
gan, 1997], and relsat [Bayardo, Jr. and Schrag, 1997] on a
number of benchmark problems from [Kautz and Selman,
1996]. All the SAT programs were run with problem en-
codings devised by Kautz and Selman. We ran the bench-
marks using Li and Anbulagan’s satz as they do not give
runtimes for these benchmarks in their paper. The runs on
satz and on our planner were on a Sun Ultra 2 worksta-
tion. Kautz and Selman ran Graphplan and Walksat on SGI
Challenger, and Bayardo and Schrag ran their program on
SPARC-10. Blank means that we found no runtime in the
papers mentioned. Whenever a runtime was reported for
several SAT encodings, we give here the lowest time. For
our runs we give the total time taken by our planner, and in
parentheses the time taken by the last stage, that is, the time
it takes to find a shortest plan if it is known what the length
of this plan is. The times in parentheses for the satisfiabil-
ity algorithms are for the last stage as given in the respec-
tive papers. The times for identifying lengths of shortest
plans are not given in the satisfiability papers presumably
because the algorithms by Kautz and Selman – who started
the work on planning by satisfiability – are not capable of
determining the inexistence of plans of certain length, that
is the unsatisfiability of a set of clauses, with certainty.

The runtimes of our program for the blocks world problems
are worse than those by the satisfiability algorithms. Unlike
in the other benchmarks, the constraints on the candidate
plans at the last stages are very loose, and our reliance on
inferences based on failed literal detection does not pay off.
The solution of these benchmarks heavily relies on good
branching heuristics, which in the case of the satisfiability
algorithms are more successful. The more compact encod-
ing of these problems by Kautz and Selman is not the cause
of this difference. For example satz generates a search tree
with only 6 choice nodes for bw-large.c. If we hardwire our
program to make the same choices, the solution is found
immediately without search. The parallel versions of these
blocks world problems are more constrained and solutions
are found quickly, for example, solving bw-large.d even
with standard parallelism without post-serializability [Di-



Table 1: Runtimes of some benchmark problems

problem R BF95 KS96
rocket.ext.a 3.8 (1.4) 520 (0.1)
rocket.ext.b 2.7 (0.6) 2337 (0.2)
bw-large.b 74.1 (33.0) 27115 (22)
bw-large.c 7144 (2350) > 10 h (564)
bw-large.d > 10 h > 10 h (937)
logistics.a 2.2 (1.4) 6743 (2.7)
logistics.b 91.4 (1.9) 2893 (1.6)
logistics.c 871.2 (3.7) > 10 h (1.9)

Table 2: Runtimes of some benchmark problems

problem R LA97 BS97
rocket.ext.a 3.8 (1.4) (0.07)
rocket.ext.b 2.7 (0.6) (0.06)
bw-large.b 74.1 (33.0) (0.3)
bw-large.c 7144 (2350) (1.6) (11.9)
bw-large.d > 10 h (218.9) (813.3)
logistics.a 2.2 (1.4) (4.2) (4.1)
logistics.b 91.4 (1.9) (0.8) (16.6)
logistics.c 871.2 (3.7) (324.2) (90.3)

mopoulos et al., 1997] takes 100 seconds. The number of
choice nodes in the search tree is 5.

Table 4 lists runtimes on a number of benchmarks from Di-
mopoulos et al. [1997]. Dimopoulos et al. encode planning
problems as nonmonotonic propositional logic programs,
and find plans by using a program (smodels [Niemelä and
Simons, 1996]) that computes the stable models of these
programs. The runtimes for Graphplan are by Dimopoulos
et al. and all runs by them were on Sparc Ultra. The times
in the DNK97 column are for finding a shortest plan when
the length of that plan is given as input. This corresponds
to the time in our column in parentheses. Like above, our

Table 3: Sizes of the search trees

problem choice nodes plan
total last failed length ops

rocketext.a 31 7 3 7 34
rocketext.b 26 4 0 7 30
bw-large.b 2 2 0 18 18
bw-large.c 1573 789 785 28 28
bw-large.d
logistics.a 14 13 0 11 54
logistics.b 438 25 1 13 47
logistics.c 3119 22 1 13 65

Table 4: Runtimes of some benchmark problems

problem R BF95 DNK97
bw-large.c 5.9 (5.5) 1830 (190)
bw-large.d 20.4 (19.7) 219600 (157)
bw-large.e 30.4 (29.3) (365)
logistics.a 0.2 (0.1) 6743
logistics.b 1.2 (0.2) 2893
logistics.c 2.7 (0.3) > 10 h (18)
train.a 22.7 (21.3) (647)
train.b 100.1 (96.2) (1261)
train.c 685.0 (109.2) (5989)

Table 5: Sizes of the search trees

problem choice nodes plan
total last failed length ops

bw-large.c 8 8 0 6 21
bw-large.d 10 10 0 6 32
bw-large.e 10 10 0 7 37
logistics.a 13 13 0 7 68
logistics.b 30 21 0 8 56
logistics.c 39 18 0 8 68
train.a 54 54 45 8 39
train.b 53 53 43 7 34
train.c 410 65 52 8 42

time outside the parentheses is the total runtime. The run-
times in Tables 1 and 2 are not directly comparable to the
those in Table 4. The blocks world runtimes are for a par-
allel encoding, and further, in all the benchmarks, it is not
required that parallel operations can be executed in all pos-
sible orders, but that there is at least one order in which
they can be executed [Dimopoulos et al., 1997]. For ex-
ample loading or unloading a truck can be performed in
parallel with moving it. With this relaxation shortest plans
are shorter, the constraints on possible plans are tighter, and
search space gets pruned dramatically. Graphplan runtimes
are with standard parallelism.

Our runtimes do not include the expansion of operator
schemata to sets of propositional operators nor the com-
putation of invariants. These computations take between
a second and a minute (bw-large.e) for the problems men-
tioned. The program performing this is written in Standard
ML. An efficient implementation in C would run much
faster. Our runtimes include, unlike the runtimes for sat-
isfiability algorithms, a preprocessing stage a major part
of which includes the precomputation of pairs of operators
that interfere and therefore cannot be applied in parallel.

Tables 3 and 5 list statistics on the sizes of search trees and
solutions with our algorithm. The first column is the total



number of choice nodes in the search trees, that is, nodes
that correspond to case analyses on operations or proposi-
tions. The second column is the number of choice nodes at
the last stage, and the third column is the number of failed
choices at the last stage (at earlier stages all choices fail.)
The third column being zero (or small in comparison to the
second column) indicates that the heuristics based on failed
literal detection was successful in choosing choice points
for case analysis. The fourth column gives the length of the
plan found, and the fifth the number of operations in the
plan. Plan lengths for the other planning and satisfiability
algorithms are the same except with the sequential version
of blocks worlds problems, where our plans are twice the
length of plans obtained with the satisfiability algorithms.
This difference is due to the encoding by Kautz and Sel-
man’s, that perform a pickup and a putdown operation at
the same point of time. The numbers of operations for dif-
ferent algorithms in many cases differ, as the solutions usu-
ally are not unique.

An interesting observation is that the solution of many of
the problems requires hardly any search. For example on
the parallel version of bw-large.e the algorithm detects the
inexistence of plans of length 6 and below simply on the ba-
sis of what can be inferred from the initial and goal states2.
All this computation is polynomial time on the size of the
planning problem. On plans of length 7 the search tree con-
tains 10 choice nodes, all of which have only one child, that
is, the choice was successful. On train.b, on the other hand,
finding the plan involves search through several dozens of
nodes, but all the failed branches are of height 1, that is,
a wrong operator is chosen for application but the error is
soon detected by failed literal detection without generating
more nodes to the search tree. Search trees of this structure
are of polynomial size, and therefore represent polynomial
time computation.

Graphplan [Blum and Furst, 1995] is the state-of-the-art
STRIPS planner. The main differences between Graphplan
and the rest of the work discussed here are that Graphplan
is based on backward search from the goal state, and that
the mutual exclusion relations that serve the same purpose
as invariants are only used for abandoning subgoals not
reachable from the initial state, and not for making infer-
ences about the state of affairs at a particular moment of
time. These differences seem to be the decisive factor that
on many benchmarks makes Graphplan fare worse than the
other programs. Note that the information in Graphplan’s
planning graph until “leveling off” [Blum and Furst, 1995]
is stronger than the 2-literal invariants. However, most of
this information is inferred by unit simplifications in SAT
algorithms and the inference rules in our algorithm. Graph-

2Also Kautz and Selman’s satplan [1996] sometimes finds out
during problem instance generation that there is no solution of a
certain length, simply by unit resolution and unit subsumption.

plan employs memoization to avoid repeatedly making the
same mistakes, but this does not give an advantage over the
rest of the approaches that do not have memoization (ex-
cluding relsat) on the kind of problems considered here.

7 CONCLUSIONS

An important research topic is the identification of better
heuristics in choosing branching operators. Our current im-
plementation simply chooses the operator (in)application
that maximizes the number of propositions or operators that
are assigned a truth-value. This is roughly what satz does,
with the exception that we have nothing that corresponds to
counting the number of short clauses, that is, no estimation
on the possibilities to use the polynomial time inferences
at the next steps is done. In many cases when the con-
straints imposed by the initial and goal states are not very
tight our heuristic chooses an operation that is able to force
the longest sequence of (nonsensical) operations which of-
ten does not contribute to bridging the gap between the ini-
tial state and the goal. Interestingly, when using the algo-
rithm to find a long solution to a problem that has a short
solution, this behavior often very quickly and successfully
produces the desired result.

In addition to improved branching heuristics, there are
prospects of speeding up the algorithm by a more aggres-
sive use of invariants. In addition to 2-literal invariants,
some problem domains would benefit from n-literal invari-
ants for n ≥ 3. Our invariant algorithm can easily be gen-
eralized to the n ≥ 3 case, but it is not clear how it can
be made efficient. Also, our algorithm does not take ad-
vantage of the fact that usually the set of ground operators
is highly structured, and it is often possible to compute the
invariants more efficiently directly from a schematic rep-
resentation of the operators. The representation of a set of
candidate invariants in the description of our invariant algo-
rithm consumes a lot of memory (our implementation uses
a slightly better representation), and therefore a more con-
cise representation should be used instead, for example one
based on binary decision diagrams [Bryant, 1992].
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