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Abstract

The research on conditional planning rejects the assumptions that there is no uncertainty
or incompleteness of knowledge with respect to the state and changes of the system the
plans operate on. Without these assumptions the sequences of operations that achieve
the goals depend on the initial state and the outcomes of nondeterministic changes in the
system. This setting raises the questions of how to represent the plans and how to perform
plan search. The answers are quite different from those in the simpler classical framework.
In this paper, we approach conditional planning from a new viewpoint that is motivated by
the use of satisfiability algorithms in classical planning. Translating conditional planning
to formulae in the propositional logic is not feasible because of inherent computational
limitations. Instead, we translate conditional planning to quantified Boolean formulae. We
discuss three formalizations of conditional planning as quantified Boolean formulae, and
present experimental results obtained with a theorem-prover.

1. Introduction

The purpose of automated planning is to construct instructions, a plan, by following which
some predefined goals can be achieved. Plans consist of operators that make a set of facts
true whenever their preconditions are fulfilled. The most basic — and the most common in
earlier research — form of plans is sequence of operators that are executed unconditionally in
the specified order. Plans of this form are sufficient only if the world where a plan is carried
out is completely predictable and known, and the execution of the plan always starts in the
same state.

When not all changes in the world can be predicted or not all facts affecting plan
execution are known in advance, the structure of plans has to be more general. If the task
is to move object A, that is in room 1 or in room 2, to a trash can, the operations that achieve
the goal depend on the initial location of A. There is no single sequence of operations that
achieves the goal in both cases. Hence parts of the plan have to be conditional on contingent
facts of the world. A plan that achieves the goal says that first go to room 1, if object A
is not there go to room 2, pick up the object, find a trash can, and drop the object in it.
When following this plan, room 2 is visited only if object A is not in room 1.

Most of the recent work on conditional planning has been carried out in the least-
commitment or partial-order planning paradigm, the underlying idea of which has perhaps
best been explicated in the planning algorithm SNLP (McAllester & Rosenblitt, 1991). This
algorithm starts with an incomplete plan that consists of descriptions of the goal and the
initial state. Plans are found by backtracking search. The children of a node in the search
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tree are generated by extending the incomplete plan. The extensions correspond to fulfilling
a subgoal by introducing a new operation or stating that an existing operation is used to
fulfill it, and removing potential conflicts between operations by imposing constraints on
their ordering.

The conditional planning algorithms CNLP (Peot & Smith, 1992) and CASSANDRA
(Pryor & Collins, 1996) extend partial-order planning algorithms that find non-conditional
plans. The nondeterminism and multiple initial states are represented as operators that
have several alternative outcomes. Plan search in these algorithms proceeds like in the non-
conditional basis algorithm until an operator with more than one outcome is introduced to
an incomplete plan. Then a context mechanism that handles conditionality is applied: if
there are n alternative outcomes, each current goal is replaced by n new ones each with a
different label corresponding to one of the alternative outcomes. The plan is complete when
every goal and subgoal — with all existing context labels — is fulfilled.

In this paper we consider conditional planning from a more abstract point of view.
Instead of extending existing algorithms that produce non-conditional plans, we view con-
ditional planning as an automated reasoning task, like in the pioneering work on planning
by Green (1969), in deductive planning (Rosenschein, 1981), and in recent work on planning
by satisfiability algorithms (Kautz & Selman, 1992, 1996). Instead of using a very general
framework like the first-order predicate logic or a dynamic logic, we choose a logic that
is sufficiently expressive for representing conditional planning but also restricted enough
to have potential for efficient implementation. The efficiency requirement together with
the recent success of satisfiability algorithms in classical planning (Kautz & Selman, 1996)
would suggest that translating problem instances of conditional planning to sets of formulae
in the propositional logic and then finding conditional plans by a satisfiability algorithm
would be a reasonable way to proceed. However, this turns out not to be the case.

We show that viewing conditional planning as a satisfiability problem is not feasible.
Even with the restriction to plans that have a polynomial length the problem of testing the
existence of conditional plans almost certainly does not belong to the complexity class NP.
Planning by satisfiability consists of constructing a candidate plan (a sequence of opera-
tions) and a polynomial-time verification that the operations in the plan achieve the goal
when starting from the initial state. Conditional planning, however, involves constructing
a plan (there exists a plan) such that for every combination of contingencies there exists
an execution that achieves the goal. This alternation of quantifiers 3V3 takes conditional
planning outside NP.

We propose an approach to conditional planning that is based on translation to a com-
putational problem that is a generalization of satisfiability of propositional formulae. This
problem is the evaluation of truth-values of quantified Boolean formulae. Quantified Boolean
formulae characterize the levels of the polynomial hierarchy (Balcazar, Diaz, & Gabarro,
1988) like propositional formulae characterize the problems in the complexity class NP. For
example, the truth of quantified Boolean formulae with the prefix 3V is a complete prob-
lem for the complexity class 5. As we will show, determining existence of solutions for
conditional planning is I15-hard. Because — under standard complexity-theoretic assump-
tions — there is no polynomial time translation from conditional planning to propositional
satisfiability, it is not feasible to solve it by an algorithm that finds satisfying assignments
of propositional formulae.
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The paper is organized as follows. In Section 3 we discuss the results on the compu-
tational complexity of conditional planning, which are the motivation for the approach we
have chosen. Section 4 presents different translations of conditional planning to quantified
Boolean formulae. The more general framework of conditional planning allows more degrees
of freedom in choosing what kind of plans a planner produces. We consider a general for-
malization in which internal state transitions of a plan are described as finite automata, and
less general formalizations with more restricted transition functions. For all formalizations
we present translations of problem instances to quantified Boolean formulae. A quantified
Boolean formula that illustrates the translations is given in Section 5. We have solved a
number of simple problems in conditional planning by using a theorem-prover for QBF we
have developed. The theorem-prover is briefly discussed in Section 6 and the experiments
in Section 7. Finally, in Section 8 we discuss earlier work that is related to ours.

2. Preliminaries

Quantified Boolean formulae are of the form q1x1¢qox2 - - - ¢pxn Where ¢ is an unquantified
propositional formula and the prefix consists of universal V and existential 3 quantifiers
q1,---,qn and the propositional variables z1,...,x, that occur in ¢. Define ¢[¢)/z] as the
formula that is obtained from ¢ by replacing occurrences® of the propositional variable z by
the formula . The truth of quantified Boolean formulae is defined recursively as follows.
The truth of a formula that does not contain variables, that is, that consists of the constants
true T and false 1 and connectives, is defined in the obvious way by truth-tables for the
connectives. A formula 3x¢ is true if and only if ¢[T /x| or ¢[L/z] is true. A formula Vx¢
is true if and only if ¢[T /x| and ¢[L/z] are true. Examples of true quantified Boolean
formulae are Vz3y(z < y) and JzJy(x A y). The formulae JzVy(z < y) and VzVy(z V y)
are false. Changing the order of two consecutive variables quantified by the same quantifier
does not affect the truth-value of the formula. It is often useful to ignore the ordering of
consecutive variables and view each quantifier as quantifying a set of formulae, for example
Jx1xoVy1y2®. The size of a quantified Boolean formula can be defined as the number of
occurrences of propositional variables in it.

The interest in quantified Boolean formulae in the theory of computational complex-
ity stems from the fact that like propositional satisfiability characterizes the problems in
NP, quantified Boolean formulae with different prefixes characterize different classes in the
polynomial hierarchy (Balcdzar et al., 1988). The complexity class P consists of decision
problems that are solvable in polynomial time by a deterministic Turing machine. NP is
the class of decision problems that are solvable in polynomial time by a nondeterministic
Turing machine. The class co-NP consists of those problems the complements of which are
in NP. In general, the class co-C consists of problems whose complements are in the class
C. The polynomial hierarchy PH is an infinite hierarchy of complexity classes X, II?, and

1
AP for all ¢ > 0 that is defined by using oracle Turing machines in the following way.

SPo= P mw = p AP = P
P P
Zfﬂ = NP> H?—i—l = CO‘Z§+1 A?—i—l = P

1. We assume that nested quantifiers do not quantify the same variable.
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CF? denotes the class of problems that is defined like the class C except that oracle Turing
machines that use an oracle for a problem in Cs are used instead of Turing machines without
an oracle. Oracle Turing machines with an oracle for a problem B are like Turing machines
except that they may perform tests for membership in B with constant cost. A problem L
is C-hard (where C may be NP, co-NP or any of the classes in the polynomial hierarchy)
if all problems in the class C are polynomial time many-one reducible to it; that is, for all
problems L’ € C there is a function f7, that can be computed in polynomial time on the
size of its input and fr/(x) € L if and only if z € L. We say that the function fr/ is a
translation from L’ to L. A problem is C-complete if it belongs to the class C and is C-hard.

The truth of quantified Boolean formulae with the prefix 3x1 - - - 2! is a complete problem
for NP= ¥¥, and with prefix Va1 - - -z the problem is complete for co-NP= II}. In general,
the truth of formulae with prefix V3V .- is ITf-complete if there are i — 1 alternations of
quantifiers, and ¥¥-complete for prefixes 3v3--- with ¢ — 1 alternations.

3. Complexity of Conditional Planning

In this section we analyze the complexity of conditional planning. The purpose of the
analysis is to justify and motivate the approach to conditional planning we adopt.

A natural approach to conditional planning would be to follow Kautz and Selman (1992,
1996) and to translate problem instances to formulae in the propositional logic, and then
find plans by an algorithm that tests the satisfiability of propositional formulae. We show
that this approach is not feasible. In addition, our results indicate that quantified Boolean
formulae have a sufficient generality for representing conditional planning.

Planning by satisfiability is based on the fact that classical planning, when restricted to
plans of polynomial size, belongs to the complexity class NP, and therefore can be translated
to any NP-complete problem in polynomial time. An NP-complete problem for which there
are several efficient decision procedures is the satisfiability of formulae in the propositional
logic. Kautz and Selman (1992) show that translating classical planning to formulae in the
propositional logic is straightforward. Solution plans are obtained as satisfying truth-value
assignments of the propositional formulae in question.

We show that with the restriction to polynomial size plans conditional planning does
not belong to the complexity class NP (assuming that the polynomial hierarchy does not
collapse to its first level.) This means that there are no polynomial-time translations from
conditional planning to classical planning or to propositional satisfiability. Even the sizes of
straightforward translations are exponential. The intuitive reason for conditional planning
being outside NP is that problems in NP can be solved by guessing a candidate solution and
then verifying in polynomial time that it actually is a solution. For finding a conditional
plan one can guess a candidate plan but testing that the plan works under all circumstances
cannot in general be performed in polynomial time, as the number of different circumstances
may be exponential on the size of the problem instance. These considerations suggest that
it is in general not feasible to perform conditional planning by a satisfiability algorithm.

The theorem below shows that the problem of determining whether the goal can be
reached from every initial state is one of the most complex problems in the complexity class
15, and therefore — very likely — not a member of the complexity class NP. The reachability
of the goal from all initial states is equivalent to the existence of conditional plans only for
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sufficiently expressive notions of conditional plans. For more restricted kinds of conditional
plans the existence of separate classical plans for every initial state does not guarantee
the existence of a conditional plan covering all initial states. In these cases proofs of II5-
hardness of plan existence have to be different, of course provided that the problems are
indeed II5-hard and not easier. Existence of classical plans for all initial states does not
necessarily imply the existence of conditional plans for example when it is not possible to
combine any two plans that work under different circumstances to a conditional plan that
works correctly whenever one of the constituent plans does.

Definition 1 A problem instance in conditional planning is a triple (I,0,G) where I is
a set of literals (characterizing the initial states), members of O are pairs p = e (the
operators) where p and e are sets of literals, and G is a literal (the goal).

A problem instance has a solution if for every initial state (a propositional model) M
such that M |= I there is a sequence 01,...,0, of operator applications that transform the
initial state M to a state M' such that M' = G. The application of p = e in M; means
that M; |= p and for the following state M;+1 = e and for all propositional variables v that
do not occur in e, M; |=v if and only if M;+1 = v.

Theorem 2 The problem of existence of solutions for problem instances in conditional
planning is 115-hard.

Proof: We show that for any quantified Boolean formula with prefix V3 there is a problem
instance in conditional planning such that the formula is true if and only if the problem
instance has a solution. For the quantified formula to be true, for all truth-values for the
universal variables it has to be possible to assign truth-values to the existential variables
so that the unquantified formula evaluates to true. In the planning setting this can be
simulated as follows. The universal variables correspond to facts in the initial state that
can be both true or false. For each initial state there has to be a sequence of operations
that assigns the existential variables truth-values that make the unquantified formula true.

Let F' be any quantified Boolean formula V1 ---x,3y1 - - - 4 ® where ® consists of ¢
clauses. We construct a problem instance P and show that F' is true if and only if P has
a solution. Constructing P takes polynomial time on the length of F. This shows that
testing the existence of solutions in conditional planning is IT5-hard. Define P = (I, 0, G)
where G = sat,

I = {=sat,~y1,...,"Ym,C1,...,7¢, s}, and
O = {s=y1,..., 8= Ym,(C1,...,¢t) = sat}
U{l; = ¢j,=s|l1 V- - Vi, is jth clause in @,1 <i < k}.

In the initial states the variables x; may have any value and variables y; are all false. The
operators s = y; can be executed to make variables y; true. The truth of clauses ¢ in ® can
be verified by executing operators | = ¢, —s. Finally, the operator (ci,...,¢;) = sat can be
applied to produce the goal if all clauses are true. The variable s is needed to prevent false
formulae appear true, like 3p(p A —=p) by the plan (—p = ¢2), (= p), (p = 1), (c1,c2 = sat).

Assume that for all assignments of truth-values to z1,...,x, the formula Jy; - - - y,,, P is
true. Take any initial state M that satisfies I. Now M determines an assignment of truth-
values by, ..., b, to x1,...,2,. Let bj,... b/ be the respective truth-values for yi,...,ym
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as determined by F. Let o01,...,05s be a sequence consisting of exactly those operators
s = y; € O such that b, = true, followed by those operators [ = ¢;, —s such that | = y; and
bl = true or | = —y; and b, = false, and finally ¢y, ...,¢; = sat. Obviously, o1,. .., 05 takes
the initial state M to a state M’ such that M’ |= sat. Therefore P has a solution.

Assume P has a solution. Take any assignment by, ..., b, of truth-values to x1,...,x,.
Let M be a propositional model such that M =1 and for alli € {1,...,n} M = z; iff b; =
true. Now there is a sequence o1, ..., 05 of operators taking M to M’ such that M’ = sat.
For all i € {1,...,m} assign true to y; if s = y; occurs in oy,...,0s before the first [; =
¢, s, and false otherwise. It is easy to show that the assignment to x1,...,2n,91,...,Ym
satisfies ®. Therefore F is satisfiable. O

Conditional planning is also no harder than problems on the second level of the poly-
nomial hierarchy. For conditional plans of polynomial size it is easy to show that finding a
plan is in the complexity class ¥5. The proof is by constructing a nondeterministic Turing
machine that runs in polynomial time and uses an oracle for a problem in NP. The Turing
machine first guesses a polynomial length string that represents a candidate plan. The
oracle then checks whether it is the case that under some circumstances the goals cannot be
reached. The oracle is represented by a nondeterministic Turing machine that guesses truth-
values for all contingent facts (in nondeterministic polynomial time), and then executes the
plan (in deterministic polynomial time) and accepts if a goal state was not reached. The
computation of the oracle is clearly in NP. As our Turing machine runs in nondeterministic
polynomial time with an NP oracle, the problem it solves is in 5.

The complexity of classical planning is known in detail. Bylander (1994) shows that
classical planning in finite domains is PSPACE-complete. Possibility of tractable planning
under syntactic restrictions on the plan operators has been investigated by Bylander and by
Béckstrom and Nebel (1995). Tractability can be achieved only with very severe syntactic
restrictions.

4. Encodings of Conditional Planning as Quantified Boolean Formulae

We have devised several translations of conditional planning to quantified Boolean formulae.
There are three separate issues in the translation of conditional planning to quantified
Boolean formulae. The first, that is no different from translating classical planning to
propositional logic, is the encoding of executions of plans. The correspondence between
plan executions and plans is not as close as in classical planning, as one plan may have
several different executions. The second issue is the representation of plans. Plans are
objects that map a state to the operators to be executed for producing a successor state.
The third issue, specific to QBF, is the representation of quantification over all initial states
and other uncertainties. In Sections 4.3.1 and 4.3.2 we propose two ways of doing this.
Unlike in classical planning where plans simply specify a sequence of operators that
are executed consecutively and the state of the environment after each operation is unam-
biguously known already at the planning time, conditional plans have to be able to behave
differently under different circumstances. For example, the environment may be different
on different executions of the plan and there may be nondeterministic events affecting plan
execution. The different responses required from conditional plans can be handled by defin-
ing conditional plans as objects with an internal state that reflects the current and earlier
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states of the environment in a sufficient extent so that correct operators can be executed.
When devising a representation for conditional plans, the decisions to be made concern how
the internal state evolves during plan execution, and how the operators to be executed are
determined by the internal state.

The idea of conditional plans as objects with an internal state naturally suggests how
the notion of classical plans should be extended. The conditional plans discussed in Section
4.2.1 explicitly represent the state of a plan as an automaton that makes transitions based
on observations concerning the environment. The state of the automaton at each time point
determines which operators are executed. Simpler forms of conditional plans are presented
in Sections 4.2.2 and 4.2.3.

The two forms of uncertainty, multiple initial states and nondeterminism, are both
important and naturally arise in many applications. However, for simplicity of presentation
we postpone the discussion on representing nondeterminism to Section 4.4, and first consider
only problem instances with several initial states.

Problem instances (O, B, YT,T") consist of

1. a finite set O of operators of the form p = e where p and e are finite sets of literals,
2. a set B of observable facts that determine how plan execution proceeds,

3. a formula T characterizing the initial states, and

4. a formula I' characterizing the goal states.

We assume that the number of atomic facts is finite. Define prec(p = e) = p and
postc(p = e) = e. Define the size sizeof(O) of a set O of operators as the sum »_{|prec(o)|+
|postc(o)| |o € O}. We assume that each operator and fact is assigned a unique integer.
The set of integers assigned to operators is denoted by I, that of facts by Ir, and that of
observable facts by Ip, and prec(i) and postc(i) for i € Ip have the obvious meaning. We
often identify an operator or a fact with its index. Define N, = |O].

A conditional plan determines for all initial states and combinations of other contin-
gencies an execution that reaches a goal state. This idea is the basis of the representation
of conditional planning as quantified Boolean formulae IPYC3IFE®, where P is the set of
propositional variables that represent plans, variables in C represent the initial states and
other contingencies, and variables in E represent executions of plans. The formula @ is a
conjunction of formulae that formalize the logical connections between propositions repre-
senting plan executions, plans, and initial and goal states.

The propositional variables used in encoding conditional planning are described in Table
1. The representation of classical planning in the framework of Kautz and Selman (1992,
1996) uses the variables O;; and P;; only. A propositional variable (I); represents the truth
of literal [ at time point ¢. For a positive literal | = p, (I); = P;; where 4 is the index of p,
and for a negative literal [ = —p, (I); = =P .

Like in planning by satisfiability (Kautz & Selman, 1992), plans usually cannot be
found by performing only one call to a theorem-prover with one formula. This is because
the problem encodings depend on the plan size, and there is no obvious upper bound for
it. Therefore the theorem-prover is first called with a formula that encodes the smallest
interesting plan, and the size is gradually increased until a plan is found. Plan size can
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variable description

Py The fact 7 is true at time ¢ (like in satisfiability planning.)
Oi The operator i is executed at time t (like in satisfiability planning.)
Cij In state ¢, proposition j (the condition) determines the successor state.

S;S;T The successor of state ¢ is j if the condition is true.
SiS; F The successor of state ¢ is j if the condition is false.

Sit The plan is in state ¢ at time .

Ei, The operator ¢ is enabled at time ¢ (Section 4.2.3) or in state ¢ (Sections 4.2.1
and 4.2.2); that is, it is executed if its preconditions are true.

Ay The operator ¢ is applicable at ¢; that is, it is enabled, its preconditions are

true, and some of its postconditions are false.

Table 1: Meaning of propositional variables in the encodings

be characterized by the length of its executions t,,,, and the number of internal states it
may be in. Plan existence corresponds to the truth of the quantified Boolean formula in
question, and the plan is represented by the truth-values of propositional variables that
represent plan elements.

To illustrate the translations, we interleave the presentation of the encodings with ex-
amples on encoding a simple blocks world problem. There are two blocks, A and B. The
blocks may be on the table or on the top of the other block. To represent this scenario
we use the facts ontableB, onBA, clearB, ontableA, clearA, and onAB. The blocks may be
moved as specified by the following four operators.

onAB, clearA = ontableA, —onAB, clearB
onBA, clearB = ontableB, ~onBA, clearA
ontableA, clearB = onAB, —clearB, ~ontableA
ontableB, clearA = onBA, ~clearA, —ontableB

W N = O

4.1 Representation of Executions of Plans

Given a sequence of (sets of) operators determined by a plan and an initial state, the
execution of the plan involves producing a sequence of successor states, the last of which
should be a goal state. To represent plan executions we need formulae that describe the
initial states and produce for each state a successor state that corresponds to the application
of the operators determined by the plan. In classical planning the plan explicitly gives a
set of operators to be executed at each point of time, whereas in conditional planning the
set of operators may depend on truth-values of facts or the internal state of the plan. We
discuss the formulae that determine the operators to be executed later together with the
different formalizations of conditional plans, as the former depend on the latter.

Plan executions are represented like classical planning as a satisfiability problem (Kautz
& Selman, 1992). This is because in classical planning plans coincide with their unique
executions: both are sequences of (sets of) operators. Plan executions are formalized as
formulae that state the preconditions and postconditions of operators (schema 1.1) and
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frame axioms that say when facts retain their truth-values (schema 1.2).

(1.1) Oig— ((L)e Ao An)e A D1 A A (L)1)
(1.2) (e VD1 VOR e V-V Onp,, ¢

forall t € {0,... tpn.— 1}

For operators i € Ip in schema 1.1, prec(i) = {l1,...,l,} and postc(i) = {l},...,1,,}. The
frame axiom says that if literal [ is false at ¢ and true at ¢t 4+ 1, then one of the operators
ni,..., Ny, that make [ true is executed at t.

If we allow the execution of several operators simultaneously, we need formulae that
state that two operators are not executed at the same time if they are dependent; that is, if
a propositional variable in the postcondition of one occurs in the precondition of the other.
If no parallelism is allowed, we have formulae =(0;+ A O;;) for t € {0, ...,t,,, — 1} and for
all {7,7} C Ip such that i # j.

The size of the set of formulae obtained from schemata 1.1 and 1.2 is of the order
(I1F| + sizeof(O))t -

Example 4.1 In the blocks world example, the formulae describing the preconditions and
the postconditions of the operators are the following for t € {0,1}. 2

Oo,t -
O1,4—
Oz —
03—

onAB; A clearA; N\ ontableAy+1 N monABii1 A clearByi1)
onBAy A clearB; N\ ontableBiyq N —monBAgi1 A clearAgyq)
ontableA; N clearBy A\ onAByy1 A\ —clearByy1 A —ontableAs41)
ontableBy; N clearAs N\ onBAy1 N\ —clearAiq A —ontableBiiq)

o~~~ S~

The frame axioms are as follows for ¢ € {0, 1}.

_|OTLABt V OTlABt+1 V O()’t ﬁOnBAt V OTLBAt+1 V Ol,t
onAB;V monABi 1V Ogy onBA;V —monBA;41 V O3y
ontableA; V —ontableAs 11V Oos  ontableB; V —ontableB; 1V O1
—ontableA; V ontableA; 1 V Oz  —ontableB; V ontableB;11 V Os
clearAs V —clearAsi 1 V O1 —clearAs V clearAiy1 V O3t
clearB; V —clearBi 11V Op ¢ —clearB; V clearBiyq1 V Oa

The simultaneous application of two operators is not allowed, which is represented by the
following formulae for all {i,j} C Ip = {0,1,2,3} such that ¢ # j and for all ¢t € {0,1}.

_\(Oiﬂf A\ Ojﬂf)
Od

To represent classical planning as a satisfiability problem, as proposed by Kautz and Selman
(1992, 1996), in addition to the above formulae it suffices to give a set of literals that describe
an initial state and a formula that describes the goals. Then a satisfiability algorithm can
be used for finding a truth-value assignment that satisfies the propositional formulae. The
truth-values for propositional variables O; ;,i € Ip,t € {0,t,,,— 1} indicate which operators
should be applied to reach the goals.

2. For clarity, instead of using propositions P; ; where ¢ is the index of a fact, we simply attach the subscript
t to the names of the facts, for example onAB;.
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4.2 Representation of Conditional Plans

Conditional plans are objects that map the current and past observations to the operators
to be executed. By the Church-Turing thesis, most general computable notions of such
mappings are equivalent to Turing machines. However, it is not necessary to consider
mappings from arbitrary observations to sequences of operations. We consider only systems
that are represented by finite sets of facts, and hence the plans do not have to be able to
respond to arbitrarily complex behavior of the environment.

We consider conditional plans that are finite state; that is, in addition to the information
obtained as observations, only a finite amount of information internal to the plan is used in
determining which operations to perform and how the internal state evolves. The control
flow in this kinds of plans is similar to that of finite automata, or equivalently to that of
programs in a simple programming language with iteration or a goto-statement and simple
if-then-else conditionals. The finite amount of information, that is the internal state of
the plan during execution, can be characterized by a state variable that corresponds to a
program counter.

Conditional plans with unrestricted transition functions are very expressive but the
number of plans with even a small number of states and observable facts is very high, which
makes plan search difficult. As there is, in general, a trade-off between the expressivity of
the representation and the difficulty of finding plans, we also consider more restricted forms
of conditional plans in Sections 4.2.2 and 4.2.3.

4.2.1 PLANS WITH UNRESTRICTED TRANSITION FUNCTIONS

The first formalization of conditional plans uses finite automata for representing the internal
state transitions the plan makes. The successor state of a state is determined by the truth-
value of an observable fact associated with the state, which we call the condition of the state.
The transition functions of the automata may be cyclic in the sense that an automaton may
return to a state it has once left.

Each state of a conditional plan has an associated set of operators. We say that for a
given state, these operators are enabled in it. If an operator is enabled in the current state,
it is executed if its preconditions are true.

In domains in which only plan execution may cause changes in the environment, this
form of plans is sufficient: whenever a problem instance in conditional planning has a
solution, that is, there is plan according to some reasonable notion of conditional plans, it
has a solution as the kind of plan discussed in this section. For the simpler notions of plans
in Sections 4.2.2 and 4.2.3 this is not the case (see Example 4.3 in Section 4.2.2.)

The number of automata with even a small number of states is fairly high and there is no
a priori upper bound on the number of states needed, so parameterizing the encoding with
respect to the number Ny of states is necessary. Solutions are first sought for by running a
theorem-prover with encodings with a small number of states and points of time, and then
gradually increasing the values of these parameters.

The formulae for formalizing conditional plans of this form are given in Figure 1. Define
Is = {1,...,Ng}. Schemata 2.1 and 2.2 state that for every state there is exactly one
condition. Schemata 3.1-3.4 state that for every state there is exactly one successor state
for both the true and the false value of the condition. This is needed to ensure that the
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UNIQUENESS OF CONDITIONS

(2.1) Cs;——Cix for all ¢ € Ig,{j,k} C Ip such that j # k,

(22) Cip, VCin, V-V and an enumeration ni,...,n,, of Iy

sTm,
UNIQUENESS OF SUCCESSOR STATES IN THE TRANSITION FUNCTION

(3.1) S;8;T — —=S5; ST .. )
C

(3.2) 8,9, F— 5,54 F for all {7, j,k} C Ig such that j # k

(3.3) S;81TV S; ST V-V SZ'SNST

(3.4) SiS1EV S;SoFV -V S; SN F

foralli € Ig
STARTING STATE
(4.1) SLO
UNIQUENESS OF CURRENT STATE
(5.1) Siy——Sj forallt €{0,... ¢}, {t,7} € Is such that i # j

TRANSITION TO A SUCCESSOR STATE

(6.1) Si,t A Ci,k A Pk,t A SZ'SjT—>Sj,H_1 for all t € {0, vy bonas — 1},
(6.2) Si,t A\ C’@k AN _‘Pk,t A SiSjFHSj,H_l {Z,j} e€lg,kelp

APPLICATION OF OPERATORS
for all j € Ig,i € Ip,

te€{0,... thw— 1}
and where prec(i) = {l,

(7.1) (Ei,j A Sjﬂg A (ll)t VANRREIVAN (ln)t) _’Oz’,t
(7.2) Oz’,t—> ((EZ'J A Sl,t) VARV (Ei,Ns A SNs,t))

)

Figure 1: Encoding of conditional plans with unrestricted transition functions

transition functions Is x {T, L} — Ig of plans are well-defined. Formula 4.1 states that the
plan execution starts in state 1 at time 0. The choice for state 1 is arbitrary, and obviously
does not sacrifice generality. Schema 5.1 states that the plan cannot be in two states at the
same time. Schemata 6.1 and 6.2 choose the successor state on the basis of the truth-value
of the condition and the transition relation. Schemata 7.1 and 7.2 apply exactly those
operators that are enabled in the current state and for which the preconditions are true.

The sizes of the formulae represented by the schemata in Figure 1 are Ny(|B|* — |B]) +
Ng|B|42(Ng® = Ng?) +2N2 + 14 (Ns? = No) b+ 2N52 | Bt + N 83260/ O)t s+ No Nt -

Hence the size of the whole set of formulae is of order
N3 + N B> + N2|B|t as + Ny 5izeof(O)t -
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Example 4.2 For the blocks world example, we produce the encoding for plans with two
states. The schemata 2.1-3.4 yield the following formulae for s € {1,2}. We assume that

the facts ontableA, clearA and onAB are observable.

Cs,ontaviea = 7Cs cieara 51511 —=515T S15:1T Vv 515T
Cs,ontapiea — 7Cs,onan 51591 —=5151T S251T V S525T
Cs.crcara = 7Cs, ontabiea S251T — —=525T
CS,clearA - _‘Cs,onAB 52591 — =525 T
Cs,onan—"Cs. cicara S151F — 515 F S151F V 5152 F
Cs,ona8 = 7Cs ontavica 515 F ——=5151F S951F V S35 F
Cs,clem‘A V Cs,ontabzeA V Cs,anAB S251F — =525 F

S9So ' — =S58 F

Truth-value assignments that satisfy these formulae represent transition functions of con-
ditional plans. The remaining formulae describe how the plan determines which operators
are executed. For t € {0,1} schemata 4.1 and 5.1 yield the following formulae.

S1,0
S1t—82; So4—S14

Schemata 6.1 and 6.2 that describe state transitions yield for {s, s’} C {1,2} and t € {0,1}
the following formulae.

Sst A Cs, ceara N clearAy N SgSgT — Sy 411

Sst A Cs, creara N —clearAy N SsSg F'— Sy 411
Sst N Cs ontaviea N ontableAy N SsSgT — So 111
Ss.t N Cs ontapiea N D0ontableA; N SsSy F'— Sy 141
Ss,t A Cs,onAB A OTLABt A SSSS/THSS/JJ,»I

Ss,t A Cs,onAB A _‘0nABt A SSSS/FHSS/J-F:[

Schemata 7.1 and 7.2 yield for ¢ € {0,1} and s € {1,2} the following formulae.

(E(],s A Ss,t A onAB; A clearAt) —>00,t O(],t—> ((EO,I A Sl,t) V (E(],Q A SQ’t))
(E1,6 N Ssi N onBA; A clearBy) — O1 4 O1t— ((E11 ANS1t) V (E12 N Sa24))
(EQ,S A Ss,t A ontableA; N clearBt) _>02,t 02,15—> ((Eg,l A 517,5) V (EQ,Q A Sg’t))
(Es,s N Ssi A ontableBy A clearA;) — O3y Oz — ((E31 A S1e) V (E32 A Say))

a

In this formalization conditional plans are determined by the valuation of variables
SiS;T, S;S;F, C;; and Ej;. To make explicit the meaning of plans there are at least
two possibilities. Give a formal definition of conditional plans for example as programs in
a simple programming language with conditionals and iteration, or give a mechanism for
executing the plans implicitly represented by the valuations of the afore-mentioned variables.
We choose the latter alternative because it is more straightforward.

So assume we have a valuation v : P — {T, L} that assigns truth-values to the set P of
propositional variables that implicitly represent a conditional plan, and the parameter t,,,,
that is the length of the plan execution. The procedure in Figure 2 executes the implicitly
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t = 0;
s = 1;
WHILE t < t,,,, DO
BEGIN
execute simultaneously all operators ¢ such that v(E; ) =T
and the preconditions of operator ¢ are true;
¢ := ¢ such that v(Cs;) = T;
sp := i such that v(SsS;T) = T;
s := i such that v(S:59;F) = T;
IF fact c is true THEN s := sy ELSE s := sp;
ti=t4+1;
END

Figure 2: Procedure for executing a plan

represented plan. The word “simultaneously” refers to the requirement that the set of
operators ¢ with true preconditions and v(E; ;) = T has to be identified before any of those
operators are executed. Note that by the uniqueness schemata 2.1-3.4 the ¢ in Cy;, SsS;T
and S3S5;F' is uniquely determined by s.

4.2.2 PLANS AS SEQUENCES OF SETS OF ITERATED OPERATORS

The plans in the previous section are very general, and the number of even relatively small
plans can be very high, which makes finding plans and determining the inexistence of
plans difficult. Many conditional planning problems have solutions as more restricted and
computationally less expensive forms of plans.

The plans discussed in this section have an internal state like the plans of the previous
section, and each state is associated with a set of operators enabled in the state, but the
state transitions are more restricted. The plan stays in the same state as long as some of
the operators enabled in it are applicable; that is, as long as there is an enabled operator
the preconditions of which are true and some of the postconditions are false. When there
are no such operators, an unconditional transition to a unique successor state is made.

Not all problem instances that have a solution as a plan of the form discussed in Section
4.2.1 have a solution as a plan of the form discussed in this section.

Example 4.3 Consider the following operators.

0 : Bob-has-1000DM = —Bob-has-1000DM, Bob-in-Kyoto

1: Bob-has-1000DM = = Bob-has-1000DM, Bob-in-Paris

2 : food-in-Kyoto, Bob-in-Kyoto, Bob-has-5DM = —Bob-has-5DM, —Bob-hungry
3 : food-in-Paris, Bob-in-Paris, Bob-has-5DM = = Bob-has-5DM, ~Bob-hungry

Initially exactly one of the facts food-in-Kyoto and food-in-Paris is true, all of the facts
Bob-has-1000DM, Bob-has-5DM and Bob-hungry are true, and the rest of the facts are
false. The goal is ~Bob-hungry.

With plans of the form discussed in Section 4.2.1 the goal can be achieved as follows.
Initially a transition to one of the internal states 2 and 3 is made, depending on which of
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DEFINITION OF APPLICABLE OPERATORS

(81) Ai,t —
() A= Aln)e A=(()e A AU A (Bip ASLe—1) V-V (Bin, A SN, 1))
for all t € {0,..., ¢ — 1},1 € Io, where prec(i) = {l1,..., 1}, poste(i) = {l},..., U}

TRANSITION TO A SUCCESSOR STATE

(9.1) Sip AN —A1 g1 Ao ADAN, 141 — Si,i41 .
' ' o ' foralli € Ig, t € {0,... thw—1
(9:2) Sit A (A1g41 V-V AN 141) — Sigt1 s { )

STARTING STATE

(10.1) Sy
UNIQUENESS OF CURRENT STATE

(11.1) S;y——Sj; forallt € {0,...,tmu},{i,7} C Is such that ¢ # j
APPLICATION OF OPERATORS

(121) (Ei,s VAN Ss,t A (ll)t VANEEIWAN (ln)t AN —'((lll)t VANKIERIVA (l;L,)t))—>Oi7t

(12.2) ((1)e A+ A (L)) — =054

(12.3) (~Eisy V S01.) A+ A (2B n, V ~Sy,1) = —Oi
forall t € {0,...,t. —1},i € Ip and s € Ig, and where prec(i) = {l1,...,ln}
and postc(i) = {l},...,1,}

Figure 3: Encoding of conditional plans as sequences of iterated operators

food-in-Kyoto and food-in-Paris is true. In state 2 the operators 0 and 2 are enabled, in
state 3 the operators 1 and 3. Obviously, the goal is achieved in all executions of the plan.

For the form of plans discussed in this section there is no solution to this problem.
Initially the operators 0 and 1 are applicable. Only one of these operators can be enabled
because under the standard notion of dependency they are dependent, and hence their
execution in parallel is not well-defined. Assume operator 0 is enabled and operator 1 is not
(the other case is symmetric), and therefore operator 0 is applied first. Now if food-in-Kyoto
is false and food-in-Paris is true, the goal cannot be achieved. O

Formulae that encode plans are given in Figure 3. Auxiliary variables A;; defined
in schema 8.1 express that the preconditions of an enabled operator 7 are true at ¢ and
some of its postconditions are false. If A;; is false for all operators ¢, then all applicable
operators have been applied and a transition to the next state is made next (schema 9.1),
and otherwise execution continues in the same state (schema 9.2.) Formula 10.1 states
that the plan execution starts in state 1 at time 0, and schema 11.1 states that the plan
cannot be simultaneously in two different states. An operator is applied when it is enabled
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in the current state, its preconditions are true and some of its postconditions are false
(schema 12.1.) If these conditions are not fulfilled, the operator is not applied (schemata
12.2 and 12.3.) An upper bound for the size of the formulae in Figure 3 is sizeof(O) Nt 0 +
2NNt oo+ 14 (N2 — Ni)t o+ 8i2€0f{O) Nt 1,0p + 512€0f(O)t 1aw + No Nt 1a Which is of order

Ns2t7naw + NONStmaw + Sizeof(O)NStmaw'

Example 4.4 For the blocks world the encoding is as follows for ¢ € {0,1}. Schema 8.1
yields the following formulae that indicate when operators are applicable.

Ao — (onAB; A clearAy AN —(ontableA; N ~onAB; A clearBy)
AN(Eo,1 A St-1) V (Eo2 A S24-1)))
Ayt < (onBA¢ A clearB A —(ontableBy AN —onBA; A clearAy)
A(E1q ANS14-1) V (E12 A S24-1)))
Ag s < (ontableAs A clearBy A ~(onAB; A\ —clearB; A —~ontableA;)
A(E2,1 A S14-1) V (E22 A S24-1)))
As s < (ontableB; A clearAy A ~(onBA; A\ —clearAs A —ontableBy)
A(E31 A S14-1) V (E32 A S2t-1)))

If no operator is applicable, a transition to the successor state is made (schema 9.1), and
otherwise the state stays the same (schema 9.2.)

St AN Ao 41 A AL 1 A Az i1 A A3 41— S2041
St A (Aog+1 VA1 VAoV Az 1) = S141
St A (Aot1 V Arpp1 V Ao V Az 1) — 52141

Schemata 10.1 and 11.1 yield the following formulae.

S1,0
S1t—S2¢ Sop— 51

Schema 12.1 yields, for all s € {1, 2}, the following formulae that describe when operators
are applied.

(Eo,s N\ Sst N onABy A clearAy N —(ontableA; N —onABy A clearBy)) — Og 4
(Evs A\ Sst N onBA¢ A clearBy A =(ontableBy A ~onBA; A clearAt)) — Oq ¢
(Ea,s N\ Sst N ontableA; N clearBy AN =(onAB; A\ —clearBy A —ontableA;)) — Oz
(Es3.s A\ Sst N ontableBy N clearAy N —(onBA; A —clearAy A —ontableBt)) — Os 4

And finally schemata 12.2 and 12.3 say when operators are not applied.

(ontableA; N —onABy A clearBy) ——0oy  ((—mEop1 V —S1) A (mEp2 V —S2,)) — 00,
(ontableBy N —monBA; A clearAy) = =01+ ((mE11V =S1) A (mE12 V —S24)) — =01 4
(onABy A —clearB; N —ontableA;) ——0g;  ((—E21 V —S14) A (mE22 V —S2,)) — 02,
(onBAy N\ —clearAy A —ontableB;) ——03;  ((—E3,1V =S14) A (mE32 V —S2)) — =034

a

The valuation of the propositional variables E; ¢ determines a conditional plan. The
procedure in Figure 4 executes the implicitly represented plan.
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t = 0;
s = 1;
WHILE t < t,,,. DO
BEGIN
execute simultaneously all operators ¢ such that v(E;s) = T and
the preconditions of operator ¢ are true and
some of the postconditions are false;
IF there is no operator ¢ such that v(E; ) =T
and preconditions of ¢ are true and some of the postconditions are false
THEN s := s+1;
ti=t4+1;
END

Figure 4: Procedure for executing a plan

t = 0;
WHILE t < t,,., DO
BEGIN
execute simultaneously all operators ¢ such that v(E;¢) =T
and the preconditions of operator ¢ are true;
t:=1t 4+ 1;
END

Figure 5: Procedure for executing a plan

4.2.3 PLANS AS SEQUENCES OF SETS OF OPERATORS

A yet simpler form of plans identifies the internal state of a plan with the current time point,
or equivalently, at each time point the plan makes an unconditional transition to a successor
state. Because the internal state coincides with time, there is no need for separate state
variables that represent internal states of plans, and the encoding is particularly simple,
consisting of one schema only.

(131) Oiﬂg — (Eiﬂg A (ll)t FANKIEIIVAN (ln)t A ﬁ((lll)t Ao A (l:@/)t))

foralli € Ip and t € {0,...,t,..,—1} where prec(i) = {l1,...,1,} and postc(z) = {l},...,1,}.
The size of the set of formulae from schema 13.1 is of order sizeof(O)t,,... The procedure
in Figure 5 executes the plan represented by the truth-values of the variables E; ;.

Example 4.5 For the blocks world example the formulae are as follows for t € {0, 1}.

Oo,t =
O14 <
Ot <
OS,t A

Eo+ N onABy; A clearAy A\ —(ontableA; N —onABy; A clearBy))
Ey i N onBA; A clearBy N =(ontableB; N ~onBA; N clearAy))
Es ¢ N ontableAs A clearBy A =(onABy A —clearB; N —ontableAy))
Es i A ontableBy N clearAy N —(onBAy A\ —clearA; A —~ontableB))

e N e N
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4.3 Quantification over Contingencies

A conditional plan determines — for all combinations of truth-values for propositional vari-
ables that represent the initial states and other contingencies — an execution that reaches a
goal state. This is represented as the sequence of quantifiers IPYC'JFE where the first quan-
tifies over plans represented by the variables in the set P, the second over all contingencies
C, and the third over executions F. By the truth-definition of quantified Boolean formulae,
for each plan P all truth-value assignments to variables in C' must be possible. Hence the
variables in C' must be logically independent. In many cases, however, the truth-values of
contingent facts are dependent on each other. For example in the blocks world, if A is on
B, B cannot be on A. To keep the variables in C' logically independent, we either cannot
quantify over the contingent facts directly or we have to classify assignments to C to those
that represent allowed combinations of truth-values and to those that do not, and only
require the existence of executions leading to a goal state for the former. We discuss both
of these alternatives below.

Let Yo be the formula for the initial state with all propositions subscripted with 0,
and I'y  similarly the formula for the goal subscripted with ¢,,. Let ® be a formula
representing plans and executions as discussed in Sections 4.1 and 4.2.

4.3.1 QUANTIFYING AUXILIARY VARIABLES

In the first alternative we use auxiliary variables D1, ..., D,, as follows. The formula Tg is
transformed to an equivalent formula Y¢ in disjunctive normal form. If there is a proposition
p that occurs in Tg but does not occur in a disjunct ¢, ¢ has to be replaced by the disjuncts
¢ Apand ¢ A—p. As a result, every disjunct has occurrences of exactly the same variables.
Let ¢1, ..., ¢, be the disjuncts of Tg. The number n of auxiliary variables is the smallest
integer greater or equal to log, m, so that for every disjunct there is a different truth-value
assignment to the auxiliary variables. If m is not a power of two, define ¢; = T for all
ie{m+1,...,2"}. Let Q be the formula

((Dl /\Dg/\~--/\Dn)—>¢1)
/\((ﬁDl ANDyA--- /\Dn)—>¢2)
A(Dy A=Dy A -+ A Dy)— 3)
/\((ﬂDl AN=DgogAN--- A Dn)—>¢4)

A((—'Dl AN=Do A+ AN=Dp_1 A —\Dn) —>¢2n).
The representation of a problem instance in this case is
IPYCIR(Q ATy, N P)

where C' consists of the variables D1, ..., D, and the variables for contingencies without
occurrences in Yo, and R is the set of propositional variables not in P U C.

Example 4.6 To represent the quantification over the three initial states we need two
auxiliary variables D; and Dy because 2l <3< 22 or equivalently 1 < logy 3 < 2. The
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problem instance is represented by the following formula (for plans from Section 4.2.3.)

Eo0 Eip E20 Es0 Eou Evy Eon B3

VD1 Dy

donABy onBAg clearAq clearBy ontableAg ontableBy O O1, O20 O30 onABy - - -
(((D1 A Dg)— (clearAg A clearBy A ontableAg A ontableBy A ~onABy A ~onBAy))
A((D1 A =Dy)— (clearAg N —clearBy A —ontableAy A ontableBy A onABy A monBAy))
A((=D1 A Dy)— (—clearAg A clearBy A ontableAyg A —ontableBy A —onABy A onBAy))
/\((—‘Dl VAN —|D2) —>T)

NonABs A ®)

The outermost existential quantifier quantifies the propositional variables describing plans,
the universal quantifier quantifies over the initial states, and the innermost existential quan-
tifier quantifies the rest of the variables that represent executions of the plan for particular
values of the universally quantified variables. O

4.3.2 QUANTIFYING CONTINGENT FACTS DIRECTLY

The second alternative quantifies over all values of the propositions C' that represent the
truth-values of facts in the initial states. If the values represent an initial state, there must
be an execution of the plan that produces a goal state. The representation of a problem
instance in this case is as follows.

APYC3R((To—TYy,,.) A ®)

Here R consists of the propositional variables not in P U C. The formula says that there
is a plan which produces a goal state when the execution starts in any of the initial states.
Executions corresponding to truth-value assignments to C' that do not represent initial
states Yy do not have to reach the goals.

Example 4.7 The blocks world example in this case is represented as follows.

dEo0 E10 Eop E30 Eo1 B Eo1 B3

VelearAg clearBg ontableAg ontableBy onABy onBAy

4000 O1,0 Oz O30 onAB; onBAjonAB; onBA; clearA; clearB; ontableA; - - -
((((clearAg A clearBy A ontableAg A ontableBy A —onABy A —onBAg)

V(clearAg N —clearBy N\ —ontableAg A ontableBy A onABy A ~onBAy)
V(—clearAg A clearBy A ontableAg A —ontableBy A —onABy A onBAg)) — onABs)
AD)

4.4 Representation of Nondeterminism

The discussion in the previous sections restricted to only one kind of uncertainty, the pos-
sibility of several initial states. However, our framework has a generality that is sufficient
for representing other kinds of uncertainties, like nondeterministic operators and nondeter-
minism in the environment. The changes that are needed concern the frame axioms and
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the formulae that describe the preconditions and postconditions of operators as discussed
in Section 4.1. All other formulae remain unaffected.

Consider an operator with preconditions Iy,...,l, and two alternative effects e; =
I .,l;}, and ex = I, .. .,lf,, one of which is chosen nondeterministically. The non-
1 2

determinism in the execution of this operator at time point ¢ is represented by a variable
c¢ that is one of the universally quantified variables. If the operator is executed at ¢t and
¢t is true, then the operator has the effect e, and if ¢; is false, then the effect is es. The
generalization to the case with more than two alternative effects is obvious.

The frame axioms and the formulae describing postconditions of operators have to be
rewritten to reflect the nondeterminism. The changes make the effects conditional on the
variable ¢;. Let ¢ € Io, prec(i) = {l1,...,l,} and postc(i) = {l},..., 1/, }.

(14.1) Ojp— (L) A=+ A (In)e)
(142) Oi7t N cg— ((llll)t—H ZARERNA (1;11’1)15-1-1)
(14.3) Oip A ey — (1)1 A - A (lg’g)tﬂ)

Frame axioms in general are of the form (1);V (1)¢+1Va1V---Vx,. Here formulae x; represent
the possible causes for the change of [ from false to true at t. In Section 4.1 the only possible
causes were the applications of operators that make [ true. When adopting nondeterministic
operators and spontaneous change in the environment, the causes for changes become more
complicated. Consider the frame axiom for a literal [ that occurs in e;. Now one of the
disjuncts x; in the frame axiom is O;; A ¢; where i is the index of the operator. If I occurs
in e, then O;; A —¢; is one of the disjuncts.

Nondeterministic change can be modeled by rules p = ej|es that work like nondeter-
ministic operators except that one of the alternative effects e; or eo becomes true always
when the precondition p is true. The formulae describing the effects of this kind of rules are
obvious: the truth of p implies the truth of e; at the next point of time when a variable ¢
representing the nondeterminism is true, and the truth of e; when c¢ is false. The construc-
tion of frame axioms for literals in e; and es is modified like in the case of nondeterministic
operators. For a literal [ in e;, the frame axiom contains a disjunct that is the conjunction
of p and ¢, and for literal [ in ey the respective frame axioms has a disjunct that is the
conjunction of p and —c.

5. An Example

The complete quantified Boolean formula for the 2-block example developed in the preced-
ing sections is given next. This formula consists of a formalization of plan executions from
Section 4.1, formulae formalizing the plans from Section 4.2.3, and formulae for quantifi-
cation from Section 4.3.1. The preconditions and the postconditions of the operators are
described by the following formulae for t € {0,1}.

Op,t— (onABy A clearA; A ontableAi 41 N ~onABiiq A clearBiyy)
onBA; A clearBy N ontableBiy1 A —onBAiy1 A clearAi1)
ontableA; N clearBy N\ onAByy1 N\ —clearByy1 A —ontableA;41)
ontableB; A clearA; N onBA11 A —clearAi 1 A —ontableByi1)

O14—
09—
O3 —

o~~~ ~
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The frame axioms for t € {0,1} are as follows.

—onAB;V onABi11V Ogy —onBA;V onBA;41V O1
onAB; V —monABi11V Ogy onBAy V —onBAy1 V O3y
ontableA; V —ontableAi11V Ogy  ontableB; V —ontableB; 1V O1 4
—ontableA; V ontableAi 1V Oz —ontableB; V ontableBii1 V O3
clearA; V —clearAi11 V O1 —clearA; V clearAi1 V O3y
clearB; V —clearBi 11 V Og ¢ —clearBy V clearBi1q1 V Ogy

The goal is to have the block A on top of block B after the execution of the plan. This is
represented by the atomic formula onABs. The initial states in the problem consists of all
the possible arrangements the blocks A and B can be in: A is on B, B is on A, or both are
on the table. This problem has a solution in all three forms of plans in Section 4.2, and we
use the one from Section 4.2.3. We get the following formulae for ¢t € {0, 1}.

Oot < (Eot N onAB; A clearAy N —(ontableAy N ~onAB; A clearBy))
O1t < (Evt N onBAy A clearBy N =(ontableBy N ~onBA; A clearAy))
Oz — (Eay N ontableA; A clearBy A —(onAB; A —clearB; A —ontableAy))
O3 < (E3 A ontableBy N clearAy N —(onBA; A\ —clearA; A ~ontableBy))

To represent the quantification over the initial states we need two auxiliary variables Dy
and Dsy. The initial states are represented by the following formulae.

(D1 A Dy)— (clearAg A clearBy A ontableAg A ontableBy A —onABy A ~onBAy)
(D1 A =Dy)— (clearAg N —clearBy A —ontableAy A ontableBy A onABy A —onBAy)
(D1 A Dy)— (—clearAg A clearBy A ontableAy A —~ontableBy A —onABy A onBAg)
(—|D1 VAN —\Dg) —T

The outermost existential quantifier quantifies the propositional variables describing plans,
the universal quantifier quantifies over the initial states, and the innermost existential vari-
able quantifies the rest of the variables that represent executions of the plan for particular
values of the universally quantified variables.

dEo,0 E10 Eop E30 Eo1 Erv Eo1 E3;
VD1 Do
JonABy onBAy clearAq clearBy ontableAy ontableBy Og g O10 O209 O30 onADB; ---

The quantified Boolean formula with the conjunction of the formulae described earlier as
the body and the above quantifiers as the prefix, is true if and only if the problem instance
in question has a solution with an execution of three points of time. The solution can be
found by a theorem-prover for QBF that returns a truth-value assignment to the outermost
existentially quantified variables Eo ¢, E1 ¢, Eay, E3y for t € {0,1} that represent plans. One
solution assigns true to Fy g and Es 1, and false to all other variables E;;. Hence, at time
0 the block B is moved from top of A onto the table if it is on top of A at 0, and at time 1
the block A is moved from table on the top of block B if A is on the table at time 1. This
obviously reaches the goal “A is on top of B” starting from all three initial states.
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PROCEDURE decide(e, (M7, My, ..., My,),C)
BEGIN
C = unit(C);
IF ) € C THEN RETURN false;
IF C =0 THEN RETURN true;
remove all variables not in C' from Mj;
IF My, = () THEN RETURN decide(not e, (Mo, ..., M,),C);
x := a member of M;;
M1 = Ml\{[E},
IF e THEN
IF decide(e, (M, ..., M,),C U{z})
THEN RETURN true;
ELSE
IF not decide(e, (M, ..., M,),CU{z})
THEN RETURN false;
RETURN decide(e, (My, ..., M,),C U{-x})
END

Figure 6: A decision procedure for quantified Boolean formulae

6. The Theorem-Prover

We have developed a theorem-prover for quantified Boolean formulae (Rintanen, 1999)
as an extension of the Davis-Putnam procedure for the satisfiability of formulae in the
propositional logic (Davis, Logemann, & Loveland, 1962). It is straightforward to extend
the Davis-Putnam procedure to handle universal quantifiers; one such extension and some
improvements are described by Cadoli et al. (1998). First the variables quantified by
the outermost quantifier are considered, then the variables by the second quantifier, and
so on. Existential variables correspond to or-nodes in the search tree, universal variables
correspond to and-nodes. The basic algorithm is given in Figure 6. The first parameter is
true if the outermost quantifier with active variables is existential and false otherwise, the
second parameter represents the quantifiers, and the third is the matrix of the formula in
clausal form. For the formula 3x129Vy1y2323((21Vy1) A (22 Vy2 Vas)) the algorithm is called
with arguments (true, ({x1,z2}, {y1,y2}, {x3}), {1 V y1,22 V y2 V 23}). The subprocedure
unit performs unit resolution and unit subsumption. The basic algorithm with the standard
efficient implementation techniques for the Davis-Putnam procedure is able to solve only
simple planning problems, and we have developed new techniques for speeding up the
algorithm. Our theorem-prover with the new techniques disabled cannot solve any of the
benchmarks in Table 3 in less than 4 hours (14400 seconds.)

The techniques for improving the obvious algorithm are based on failed literal detec-
tion (Freeman, 1995; Li & Anbulagan, 1997), and for formulac 3XVY ® on performing
computation with the universal variables Y before all variables in X have been assigned a
truth-value. First, before performing exhaustive search on all possible truth-value assign-
ments to variables in X, assigning any truth-values to some of the variables in Y and then
performing unit resolution often yields truth-values to some of the variables in X. The
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truth-values obtained are ones that must be assigned to those variables. Second, at any
node of the search tree, if assigning true to p € X and any truth-values to some of the
variables in Y and then performing unit resolution yields a contradiction, then p has to be
assigned false. Third, detecting failed literals by unit resolution can also be performed on
variables that cannot be chosen as the next branching variable, that is variables quantified
by some other than the current outermost quantifier.

An important research topic on reasoning with QBF is how for a true formula with n
universally quantified variables, going through all of the 2" truth-value assignments can
be avoided. Currently the only technique we employ is partitioning clause sets — at each
node of the search tree — so that no two sets have variables in common. For some planning
problems, the QBF is split to several clause sets with a low number of universal variables
occurring in each, and this way the number of assignments that have to be considered is
much less than 2.

7. Experiments

We have written a program that translates conditional planning problems to QBF, and
performed computational experiments in which conditional plans have been found by the
theorem-prover discussed in Section 6.

All the translations are automatically generated from the set of operators and the formu-
lae that describe the initial and goal states. This program includes the automatic generation
of invariants for the problem instance. The use of invariants (Gerevini & Schubert, 1998;
Rintanen, 1998) and related techniques for pruning search spaces is one of the distinguishing
features of recent classical planners. By invariants we mean formulae that are true in all
reachable states of a problem instance. Invariants are determined by the operators and the
initial states, and they help plan search also in conditional planning.

We have run two series of benchmarks. The first benchmark demonstrates planning
under n independent sources of uncertainty that corresponds to 2" problem instances with-
out uncertainty. The purpose of this benchmark is to demonstrate that it can be more
natural and much easier to solve the whole conditional planning problem once, instead of
solving the corresponding classical problem instances separately. The second benchmark is
the blocks world with several initial states. We let our theorem-prover find a conditional
plan that reaches a given goal state starting from every possible state. This benchmark is
parameterized by the number of blocks, and we can solve the problem with 4 blocks in a
reasonable time. For 5, 6 and 7 blocks the problem has respectively 501, 4051 and 37633
initial states, and our translator has difficulties in translating a QBF representation of these
states to clausal form.

The first scenario consists of a sequence of rooms with a pair of doors connecting con-
secutive rooms. Exactly one door of each pair is open, and before executing the plan it is
not known which. The goal is to go from the first room to the last. We ran this bench-
mark with the encoding from Section 4.2.3. In this case there is only one parameter that
is increased during plan search, the length of the plan. Hence the theorem-prover is first
called with a formula that encodes plans/executions of length 1, then with a formula for
length 2, and so on. From the first formula that is found to be true a plan that reaches
the goal can be extracted. In Table 2 we give statistics on the evaluation of formulae with
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rooms istates clauses vars runtime nodes
13 4096 4582 925 0.2 s 12
14 8192 5458 1080 0.2s 13
15 16384 6424 1247 0.3s 14
16 32768 7483 1426 04 s 15
17 65536 8638 1617 0.4 s 16
18 131072 9892 1820 0.6 s 17
19 262144 11248 2035 0.8s 18
20 524288 12709 2262 0.9s 19
21 1048576 14278 2501 1.1s 20
22 2097152 15958 2752 14s 21
23 4194304 17752 3015 1.6s 22
24 8688608 19663 3290 1.9s 23

Table 2: Runtimes for the Rooms problem

the encoding in Section 4.2.3. All the formulae are true and correspond to the shortest
plan lengths for which solutions exists. In all cases, the runtimes for evaluating the false
formulae that correspond to shorter plan lengths are smaller. The first column in the table
gives the number of rooms, the second the number of initial states, the third the number of
clauses in the quantified Boolean formula, the fourth the number of propositional variables
in that formula, the fifth the runtime, and the sixth the number of non-leaf nodes in the
search tree. All the runs were on a Sun Ultra II workstation with a 296 MHz processor.
The runtimes with the encoding from Section 4.2.2 are comparable.

Table 3 contains statistics on the solution of some blocks world problems. Sample
solution plans are given in Appendix A. The goal in these problems is to take the blocks to
a certain configuration (a stack containing all the blocks) from all initial configurations. For
each of the six problem instances, with three or four blocks and one of the three problem
encodings presented earlier, we have generated formulae for several parameter values that
characterize the sizes of the solutions. The statistics given in Table 3 are for the true
formulae that represent a solution (last in each set of formulae), and the false formulae that
correspond to the highest parameter values for which there are no solution plans.

For the runs of the theorem-prover for each formula we give the following information.
The first column gives the section in which the encoding is described, the second column
the number of blocks, the third the number of initial states, the fourth the length of longest
execution needed, the fifth the number of states in the plan (if separate from the number
of time points), the sixth the number of clauses in the formula, the seventh the number of
propositional variables, the eighth the number of seconds it takes for our theorem-prover
to evaluate the formula, the ninth the number of non-leaf nodes in the search tree, and the
tenth the truth-value of the formula. With the encoding from Section 4.2.1 the facts conXY
defined as onXY A clearX are observable. Other facts could be used as well, and the choice
of facts may affect both the existence of plans and the size of plans.

The runtimes in Table 3 roughly confirm the idea that the plan representations in
Sections 4.2.1, 4.2.2 and 4.2.3 are decreasingly computationally demanding. The slightly
lower runtime and noticeably lower number of nodes in the search tree for the 4 block
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encoding blocks istates time states clauses vars runtime nodes value
S4.2.1 3 13 4 4 2928 288 0.1s 0 false
S4.2.1 3 13 5 3 2892 286 354.4 s 391 false
S4.2.1 3 13 5 4 3852 328 69.7 s 87  true
S4.2.2 3 13 4 3 2533 247 0.1s 0 false
S4.2.2 3 13 5 2 2707 282 0.6 s 0 false
S4.2.2 3 13 5 3 3402 304 3.4s 29  true
S54.2.3 3 13 4 - 1433 202 0.0s 0 false
S4.2.3 3 13 5 - 1835 256 1.7s 35  true
S4.2.1 4 73 6 4 15872 779 51.0 s 0 false
S4.2.1 4 73 7 3 15219 783 >15h ? ?
S4.2.1 4 73 7 4 18768 863 >15h ? ?
S54.2.2 4 73 6 3 15061 838 41.1 s 0 false
S54.2.2 4 73 7 2 15047 915 85.9 s 0 false
S54.2.2 4 73 7 3 22959 1023 231.3s 190  true
S54.2.3 4 73 6 - 9661 727 11.2s 0 false
S54.2.3 4 73 7 - 11303 855 239.0s 809  true

Table 3: Runtimes for the Blocks World

example with the plan encoding from Section 4.2.2 than with the simpler encoding from
Section 4.2.3 may therefore be surprising. The difference would seem to be due to the fact
that the low number of internal states (three) in the plans from Section 4.2.2 forces the plan
to stay in some of the states for several points of time. For plans from Section 4.2.3 there is
no such restriction and the sets of operators enabled at each point of time may be different.
The constraints on solution plans are therefore not as tight for the simpler representation,
and more search is needed for finding a plan.

With these blocks world problem instances the solution of the separate problems is very
easy for the best classical planners. What makes these problems difficult is that the plans
represent all possible executions, and the constraints on the plans are not as tight as in
the benchmarks in Table 2 or in the separate classical planning problems. However, when
considering that the number of elements in the resulting plans is relatively high (fifteen or
more for the bigger problems) and the notion of plans is much more complicated than in
classical planning, the runtimes are not disappointing.

Some of the observations about plan search in our approach are interesting. Even though
there are three quantifiers, our theorem-prover does not perform search on variables quan-
tified by the third one that represent plan executions. This is because the plan, represented
by the outermost variables, together with the universally quantified variables for the con-
tingencies, uniquely determine the execution that is found without search. This is nicely
on par with the fact that conditional planning is on the second level of the polynomial
hierarchy, not on the third as the prefix 3vd in the encodings might suggest.

As shown in Table 2, the runtimes for plan generation can be much less than linear to the
number of initial states. None of the early conditional planning algorithms is able to exhibit
similar behavior; that is, they produce plans of exponential length and therefore consume
exponential time even on simple problems like these. The favorable runtimes are due to our
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theorem-prover implementation. For example for the problems in Table 2, naive extensions
of the Davis-Putnam procedure to QBF consider all of the 2" truth-value assignments to
the universally quantified variables just to verify that a plan that has been found actually
reaches the goal in all cases. Further developments in theorem-proving techniques for QBF
and propositional satisfiability are likely to improve these runtimes further.

8. Related Work

Both Peot and Smith (1992) and Pryor and Collins (1996) present algorithms for conditional
planning that are based on the least-commitment or partial-order planning paradigm. Both
algorithms work like corresponding classical planning algorithms until a subgoal is fulfilled
by the application of an operator that does not have a unique outcome, that is, the operator
is nondeterministic. At that point the development of the conditional plan is split to a
number of separate subproblems that are solved separately, each corresponding to one of
the outcomes of the nondeterministic operator. The problem with this approach is that the
sizes of conditional plans are exponential on the number of uncertainties, and as generating
a solution takes at best linear time on the size of the solution (usually exponential), this
kind of algorithms inherently consume a lot of computational resources. Furthermore, often
the improvement over the trivial conditional planning algorithm that simply reduces the
problem to a number of classical planning problems that are solved separately, is small. They
fare better than the trivial algorithm whenever some of the contingencies are irrelevant in
reaching the goal, or if the separate plans have parts in common.

Cimatti et al. (1998) propose an algorithm for conditional planning that enumerates
the state space. Starting from the goal states, the sets of states from which a goal state
is reachable with n > 0 steps or less are computed. When for some n the set includes
all initial states, a plan has been found. During the enumeration, each state is associated
with an operation that is along a shortest path to a goal state. Now the goals can be
reached from any of the initial states by repeatedly applying the operator associated with
the current state. As the number of state-action pairs in these plans is as high as the
number of states, problem instances with big state spaces consume more memory than is
likely to be available. To alleviate this problem Cimatti et al. propose the use of binary
decision diagrams (Bryant, 1992) for encoding the state-action tables. BDDs are in general
not capable of representing exponential size data structures in polynomial space.

Smith and Weld (1998) extend GRAPHPLAN (Blum & Furst, 1997) to handle uncertainty
and several initial states. The plans produced by their planner are sequences of operators
like in classical planning, but as the effects of operators may be conditional on some facts,
the plans may achieve the goals even when starting the plan execution in different states
or when there is nondeterminism. Smith and Weld call this conformant planning. Their
planning algorithm explicitly represents information on all executions of a plan. This may
be possible when the number of initial states is small, up to a couple of dozen or a hundred
on small problem instances, but for more complex problems it is not feasible because of
high memory consumption. Representing conformant planning in our framework is easy.

Our work and satisfiability planning by Kautz and Selman (1992, 1996) are closely
related. A major difference is that we can directly address a much wider range of planning
problems with nondeterministic change and several initial states. Because of the added

347



RINTANEN

generality, the problems we can solve do not in general belong to the complexity class
NP. If all sources of uncertainty are eliminated, our translations contain only existential
quantifiers, and these quantified Boolean formulae are true exactly when the same formulae
without the quantifiers are satisfiable. Our translations in these cases still contain the more
complex representation of conditional plans, but otherwise the resulting sets of formulae
are similar and plans can be found by a satisfiability algorithm.

A fundamental difference between the satisfiability algorithms of Kautz and Selman and
our theorem-prover is that the former, GSAT and WALKSAT, are based on local search.
These algorithms repeatedly try to guess truth-value assignments that satisfy the set of
clauses. At no point of time is there a guarantee that all assignments have been considered,
and therefore these algorithms are not capable of determining the unsatisfiability of a set
of clauses. In general, because local search algorithms do not exhaustively go through the
search space, they cannot determine with certainty that an object with a certain property
does not exist. A local search algorithm can find a conditional plan but it cannot determine
its correctness. Without systematically considering all combinations of contingencies, only
counterexamples that show a plan incorrect can be found. Therefore at least those parts of
algorithms for conditional planning that verify that a plan is correct have to be systematic.

9. Conclusions and Future Work

We propose a new approach to conditional planning that is based on representing problem
instances as quantified Boolean formulae and using an automated theorem-prover for finding
plans. This approach is both theoretically and practically well motivated. As a practical
motivation we see the recent success of satisfiability algorithms (Kautz & Selman, 1996) in
classical planning. The problem of determining truth-values of quantified Boolean formulae
is a generalization of the problem of satisfiability of propositional formulae. As a theoretical
justification we give complexity results that demonstrate that it is in general not feasible
to use satisfiability algorithms in conditional planning.

This work differs from earlier work on conditional planning in several respects. Unlike
the planning algorithms CNLP and Cassandra (Peot & Smith, 1992; Pryor & Collins, 1996),
we do not reduce conditional planning to the simpler case of planning without uncertainties.
As shown by our theoretical analysis, this reduction would be ill-motivated, as it most likely
cannot be done in polynomial time. In some cases when finding a plan is easy, this reduction
makes it very costly. Cimatti et al. (1998) give an algorithm that enumerates the state
space of a conditional planning problem. The plans constructed by their algorithm explicitly
associate an operation with every state, and this inherently leads to big plans. It is not
clear whether the BDD techniques they propose make this feasible for complex problems.

We have developed a prototype implementation of a theorem-prover for QBF and ex-
perimented with producing conditional plans with it. The results are preliminary, but give
a justification to our approach: simple benchmark problems that would be far too difficult
for some of the earlier conditional planners are quickly solved in time that is sublinear on
the number of initial states in the problem instances. We believe that expressing condi-
tional planning as a theorem-proving task makes it easier to identify general techniques that
benefit the construction of conditional plans, and also to identify techniques that cannot be
conveniently embedded in particular theorem-proving frameworks.
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state 1:

ENABLE clearA onAC => -onAC ontableA clearC
ENABLE onBA clearB => -onBA ontableB clearA
ENABLE onBC clearB => -onBC ontableB clearC
ENABLE onCA clearC => -onCA ontableC clearA

state 2:

ENABLE onBA clearC clearB => -onBA -clearC onBC clearA
ENABLE clearA onAC => -onAC ontableA clearC

ENABLE ontableB clearC clearB => -ontableB -clearC onBC

state 3:

ENABLE onAB clearA => -onAB ontableA clearB
ENABLE clearA onAC => -onAC ontableA clearC
ENABLE onCA clearC => -onCA ontableC clearA
ENABLE onCB clearC => -onCB ontableC clearB

state 4:

ENABLE clearA onAC => -onAC ontableA clearC

ENABLE onCB clearC => -onCB ontableC clearB

ENABLE ontableA clearA clearB => -ontableA -clearB onAB
ENABLE ontableB clearC clearB => -ontableB -clearC onBC

Figure 7: Enabled operators for each state
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Appendix A: Sample Plans

Sample plans found by our theorem-prover are given below. In the first problem with three
blocks, the goal is to have A on B and B on C. The initial states are all the possible
configurations of the three blocks. The plan encoding is the one described in Section 4.2.1
and it has four states. In each state a number of operators are enabled, as described in
Figure 7. The execution of the plan starts from state 1, and the goal is reached at time 4.
At every point of time a transition to a successor state is made on the basis of truth-values
of facts conXY that are defined by conXY < (onXY A clearX). The transition function
is given in Table 4. In all executions of the plan, transitions through the same sequence
1,3,2,4 of states are made.

The second problem instance has four blocks. We give a plan obtained with the encoding
in Section 4.2.2. The goal is to have A on B, B on C, and C on D. The initial states are
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state 1:

ENABLE
ENABLE
ENABLE
ENABLE
ENABLE
ENABLE
ENABLE
ENABLE
ENABLE
ENABLE
ENABLE
ENABLE

onAB
onAC
onAD
onBA
onBC
onBD
onCA
onCB
onCD
onDA
onDB
onDC

state 2:
ENABLE onBA clearC clearB => -onBA -clearC

ENABLE ontableB clearA clearB
ENABLE ontableC clearD clearC

state 3:

ENABLE ontableA clearA clearB

all the possible configurations of the four blocks. The plan has three states. The enabled
operators of each state s are applied repeatedly until no more operators are applicable, and
then a transition to the successor state s + 1 is made. The enabled operators for each state
are given in Figure 8. When exiting state 1, all blocks are on the table. In state 2, first B
is moved on top of A and C is moved on top of D, and then B is moved from A on top of

clearA
clearA
clearA
clearB
clearB
clearB
clearC
clearC
clearC
clearD
clearD
clearD

RINTANEN

transition | when

1=3 conBC

1=3 —-conBC

2=2 conAC

2=>4 —conAC

3=2 conAC

3=2 —conAC

4= 2 conAC

4=1 —conAC

=> -onAB ontableA
=> -onAC ontableA
=> -onAD ontableA
=> -onBA ontableB
=> -onBC ontableB
=> -onBD ontableB
=> -onCA ontableC
=> -onCB ontableC
=> -onCD ontableC
=> -onDA ontableD
=> -onDB ontableD
=> -onDC ontableD

C. Finally in state 3, A is moved on top of B.
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Table 4: Transition function

clearB
clearC
clearD
clearA
clearC
clearD
clearA
clearB
clearD
clearA
clearB
clearC

=> -ontableB
=> -ontableC

=> -ontableA

onBC clearA
—clearA onBA
—-clearD onCD

-clearB onAB

Figure 8: Enabled operators for each state
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