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Abstract

We show how testing whether a system is diagnos-
able can be reduced to the satisfiability problem and
how satisfiability algorithms yield a very efficient
approach to testing diagnosability.
Diagnosability is the question whether it is always
possible to know whether a given system has ex-
hibited a failure behavior. This is a basic question
that underlies diagnosis, and it is also closely re-
lated to more general questions about the possibil-
ity to know given facts about system behavior.
The work combines the twin plant construct of
Jiang et al., which is the basis of diagnosability
testing of systems with an enumerative represen-
tation, and SAT-based techniques to AI planning
which form a very promising approach to finding
paths in very large transition graphs.

1 Introduction
Faults in dynamic systems can be diagnosed by observing a
sequence of events taking place in the system and inferring
the occurrence of unobservable failure events[Sampathet al.,
1995]. A main question arising in this setting is whether it is
always possible to infer that a failure has occurred. A sys-
tem that has this property isdiagnosable. The diagnosability
question for transition systems with a graph representation
can be solved in polynomial time[Jianget al., 2001].

Many systems exhibit regularities best captured by repre-
senting them in terms of state variables, which also makes it
possible to represent systems with very large state spaces suc-
cinctly without representing each state explicitly. The num-
ber of states of a succinctly represented system may be ex-
ponential in the size of its representation, which makes the
diagnosability problem PSPACE-complete[Rintanen, 2007].
The diagnosability problem is similar to other PSPACE-
complete problems like AI planning and LTL model-checking
in that it reduces to finding paths in a graph. An effi-
cient approach to solving AI planning and model-checking
problems is to reduce them to the satisfiability problem of
the classical propositional logic[Kautz and Selman, 1996;
Biereet al., 1999]. This suggests a similar approach to diag-
nosability testing, which is what we pursue in this work.

The structure of the paper is as follows. In Section 2 we
present the transition system framework and formally define
when a system is diagnosable. Section 3 contains the main
contribution of the work, an encoding of the diagnosabil-
ity problem as a formula in the classical propositional logic.
In Section 4 we show how these formulae can be used to
demonstrate that a system indeed is diagnosable, as opposed
to showing that it is not. Section 5 contains a demonstra-
tion of the scalability of the approach to transition systems
with very large state spaces, and Sections 6 and 7 conclude
the paper by discussing related work and pointing out future
research directions.

2 Preliminaries
We define transition systems following Sampath et al.[1995].

Definition 2.1 (Transition systems)A transition system is a
tupleT = 〈X,Σo,Σu,Σf , δ, s0〉 where

• X is a set of states,

• Σo is a set ofobservable events,

• Σu is a set ofunobservable events,

• Σf is a set offailure events,

• δ ⊆ X × (Σo ∪Σu ∪Σf )×X is the transition relation,

• s0 ∈ X is an initial state.

The transition system is initially in the states0, and an
event sequencee0, . . . , en−1 takes the system through a se-
quences0, s1, . . . , sn of states such that(si, ei, si+1) ∈ δ for
all i ∈ {0, . . . , n− 1}. Note that a statesi and an eventei do
not necessarily determine the successor statesi+1 uniquely.

Let T = 〈X,Σo,Σu,Σf , δ, s0〉 be a transition system. We
say thate0, . . . , en−1 is a sequence of events inT if there
are statess1, . . . , sn such that(si, ei, si+1) ∈ δ for all i ∈
{0, . . . , n− 1}.

The state sequence nor the unobservable or the failure
events can be observed. In deciding whether a failure has
occurred only the sequence of observable events is available.

Let σ ∈ (Σo ∪ Σu ∪ Σf )∗ be a sequence of events. We
define itsprojectionπ(σ) to observable events recursively as
follows.

π(ε) = ε
π(eσ) = π(σ) if e 6∈ Σo

π(eσ) = eπ(σ) if e ∈ Σo



Sampath et al.[1995] give a definition of diagnosability
which we adapt to our notation.

Definition 2.2 (Diagnosability) A transition systemT =
〈X,Σo,Σu,Σf , δ, s0〉 is diagnosableif there isd such that for
any sequenceσ of events inT that ends in a failure event and
for all sequencesσ1 = σσ′ andσ2 in T such that|π(σ′)| ≥ d
andπ(σ1) = π(σ2), σ2 includes a failure event.

Hence a system is diagnosable if and only if there are no
two infinite event sequences which have the same observable
events and one of them contains a failure event and the other
one not. In other words, every infinite continuation of an
event sequence with a failure is distinguishable from every
infinite event sequence without a failure.

The constantd is calledthe delay. Not all failures can be
detected immediately after they have taken place, and the de-
lay expresses how many further events have to be observed
before being certain that a failure has taken place.

2.1 Succinct System Representation

The structure of many systems is highly regular and it may be
more practical to represent states in terms of state variables
and the relations corresponding to events in terms of changes
to the values of the state variables. This often makes it possi-
ble to represent very large systems compactly.

The set of states of a system consists of all the valuations
of the state variables in a finite setA. In this paper we restrict
to two-valued (Boolean) state variables. Hence a states :
A → {0, 1} is a total function from the state variables to the
constants 1 (true) and 0 (false). Aliteral is a state variable or
its negation, and the set of all literals isL = A∪{¬a|a ∈ A}.
The languageL overA consists of all formulae that can be
formed fromA and the connectives∨ and¬. We use the
standard definitions of further connectivesφ ∧ ψ ≡ ¬(¬φ ∨
¬ψ), φ→ψ ≡ ¬φ ∨ ψ andφ↔ ψ ≡ (φ→ψ) ∧ (ψ→φ).

The main design decision for succinct transition systems is
how to represent transition relations. It would be possible to
use arbitrary propositional formulae which is a powerful and
general representation, but as our intention is to utilize inde-
pendence of events for obtaining more efficient diagnosability
testing, we have decided to use a more restricted representa-
tion that makes it possible to define what does it mean that
two or more events take place simultaneously.

Definition 2.3 (Succinct transition systems)A succinct
transition system is a tuple〈A,Σo,Σu,Σf , δ, s0〉 where

• A is a finite set of state variables,

• Σo is a set ofobservable events,

• Σu is a set ofunobservable events,

• Σf is a set offailure events,

• δ : Σo ∪ Σu ∪ Σf → 2L×2L

assigns each event a set of
pairs 〈φ, c〉, and

• s0 is an initial state (a valuation ofA).

An evente ∈ Σo ∪ Σu ∪ Σf is described by a set of pairs
〈φ, c〉 which indicate that the event can be associated with
changesc in states that satisfy the conditionφ. More for-
mally, an evente ∈ Σo ∪ Σu ∪ Σf is possible in any states
such thats |= φ for some〈φ, c〉 ∈ δ(e). Whene takes place
in s, one of the pairs〈φ, c〉 ∈ δ(e) satisfyings |= φ is chosen
and the effect of the event is that the literals inc become true.

Lets be a state andc a consistent set of literals. Then define
the successor states′ = succ(s, c) of s with respect toc by

1. s′(a) = 1 for all a ∈ A such thata ∈ c,
2. s′(a) = 0 for all a ∈ A such that¬a ∈ c, and

3. s′(a) = s(a) for all a ∈ A that do not occur inc.

A succinct transition system can be mapped to a transition
system as follows.

Definition 2.4 Let T = 〈A,Σo,Σu,Σf , δ, s0〉 be a succinct
transition system. Then define the transition systemT ′ =
R(T ) byR(T ) = 〈X,Σo,Σu,Σf , δ

′, s0〉 where

1. X is the set of all valuations ofA and

2. δ′ = {(s, e, succ(s, c)) ∈ X × (Σo ∪ Σu ∪ Σf )×X|
〈φ, c〉 ∈ δ(e), s |= φ}.

2.2 Simultaneous Events
An important factor of efficient SAT-based planning[Kautz
and Selman, 1996] is the notion of parallel or partially or-
dered plans. This means that several independent actions can
be taken simultaneously, and it has the advantage that it is un-
necessary to consider alln! total orderings ofn independent
events as their mutual ordering does not matter.

Dependence is defined through the notion ofinterference.
The pairs〈φ1, c1〉 and〈φ2, c2〉 interfereif there isa ∈ A that
occurs positively/negatively inc1 and negatively/positively
in φ2 or in c2, or positively/negatively inc2 and nega-
tively/positively inφ1.

Eventse1, . . . , en can take place simultaneously witho1 ∈
δ(e1), . . . , on ∈ δ(en) if o and o′ do not interfere for any
{o, o′} ⊆ {o1, . . . , on} such thato 6= o′.

We will consider diagnosability testing with sequences
E1, . . . , En of (possibly empty) setsEi of event occur-
rences such that all members ofEi are mutually non-
interfering. We define the successor states′ of s with re-
spect to a setE of non-interfering event occurrences by
s′ = succ(s,

⋃
〈φ,c〉∈E c).

Let σ ∈ (2Σo∪Σu∪Σf )∗ be a sequence of sets of events. Its
projectionπ(σ) to observable events is defined as follows.

π(ε) = ε
π(Eσ) = (E ∩ Σo)π(σ)

For a succinct transition system we say thatE0, . . . , En−1

is a sequence of parallel events inT if there are states
s0, . . . , sn such that for alli ∈ {0, . . . , n − 1} si+1 =
succ(si, E) for someE = {o1, . . . , ok} such that there are
o1 ∈ δ(e1), . . . , ok ∈ δ(ek) whereEi = {e1, . . . , ek}
andoh andoj do not interfere for anyh ∈ {1, . . . , k} and
j ∈ {1, . . . , k}\{h}.

Diagnosability of succinct transition systems with simul-
taneous events is defined analogously to Definition 2.2. The



length|(E1, . . . , En)| of sequences of sets of parallel events
is defined as the sum

∑n
i=1 |Ei| of the cardinalities of the sets.

A small technical difference is caused by the fact that projec-
tion π(E1, . . . , En) for sequences of parallel events always
results in a sequence of the same lengthn (often with empty
event sets.) It can be shown that the definitions are equivalent
by interpreting a set of parallel events as any total ordering of
the events.

3 Diagnosability as a Satisfiability Problem
Jiang et al.[2001] have shown how the diagnosability test can
be reduced to finding a path in a graph. Their test is based on
making the definition of diagnosability (Definition 2.2) finite
by constructing a product transition system, sometimes called
the twin plant, in which states are pairs(s, ŝ) of states of the
original transition system, and events represent unobservable
events in one or both of the components of these state pairs,
or observable events shared by both components. If in this
system there is an event sequence from(s0, s0) to some(s, ŝ)
which includes a failure event in the first component but not in
the second, and there is a non-empty event sequence back to
(s, ŝ) with no failures in the second component, then a pair of
infinite event sequences witnessing non-diagnosability exists.
This reformulation of Definition 2.2 reduces infinite event se-
quences to cycles in a graph.

This diagnosability test can be formulated as a satisfiabil-
ity problem in the classical propositional logic, similarly to
other path finding problems in AI planning[Kautz and Sel-
man, 1996]. We construct a formula for which the satisfiable
valuations correspond to pairs[(s0, . . . , sn), (ŝ0, . . . , ŝn)] of
state sequences withs0 = ŝ0 that correspond to pairs
[(E0, . . . , En−1), (Ê0, . . . , Ên−1)] of event sequences such
thatπ(E0, . . . , En−1) = π(Ê0, . . . , Ên−1) and of which one
contains a failure event and the other does not, and which
loop back to(si, ŝi), that is,sn = si and ŝn = ŝi for some
i ∈ {0, . . . , n − 1}. The formula for a given event sequence
length is satisfiable if and only if it is not possible to detect
the occurrence of a failure event.

The encoding of state and event sequences is similar to
the encoding of planning in the propositional logic[Kautz
and Selman, 1996]. That the projections of both sequences
to observable events coincide is guaranteed by forcing each
observable event to take place in both sequences simultane-
ously. Essentially, each observable event is a joint event of
both sequences.

Next we define the formula for diagnosability testing of
a succinct transition systemT = 〈A,Σo,Σu,Σf , δ, s0〉.
The events at each time pointt are described by a formula
T (t, t+ 1) parameterized witht. The propositional variables
occurring in the formula, with superscriptst referring to dif-
ferent times points, are the following.

• at andât for all a ∈ A andt ∈ {0, . . . , n}.
• et

o for all e ∈ Σo ∪ Σu ∪ Σf and o ∈ δ(e) and t ∈
{0, . . . , n− 1}.

• êt
o for all e ∈ Σo ∪Σu, o ∈ δ(e) andt ∈ {0, . . . , n− 1}.

• et for all e ∈ Σo andt ∈ {0, . . . , n− 1}.

Propositional variables with a hatâ represent event occur-
rences and values of state variables in the second event se-
quence that does not contain failure events. The propositional
variableset describe the occurrence of observable events si-
multaneously in both event sequences.

Next we describeT (t, t+ 1) for a givent. When an event
occurs, the event must be possible in the current state and it
has some effects.

et
o→φt for everyo = 〈φ, c〉 ∈ δ(e)
et
o→

∧
l∈c l

t+1 for everyo = 〈φ, c〉 ∈ δ(e)
The value of a state variable changes only if there is a rea-

son for the change.

(at ∧ ¬at+1)→
(
et
1o1

∨ · · · ∨ et
kok

)
for all a ∈ A whereo1 = 〈φ1, c1〉, . . . , ok = 〈φk, ck〉 are
all event occurrences with¬a ∈ ci and e1, . . . , ek are the
respective events withoi ∈ δ(ei). For the change from false
to true the formulae are defined similarly by interchanginga
and¬a.

An event can occur in only one way, and two events cannot
be simultaneous if they interfere.

¬(et
o ∧ et

o′) for all e ∈ Σo ∪ Σu ∪ Σf and{o, o′} ⊆ δ(e)
such thato 6= o′

¬(et
o ∧ e′to′) for all {e, e′} ∈ Σo ∪ Σu ∪ Σf ando ∈ δ(e)

ando′ ∈ δ(e′) such thato ando′ interfere

The above formulae describe one step of an event se-
quence. We need to represent two event sequences, so we
have a copy of all of the above formulae in which all propo-
sitional variablesat andet

o have been replaced bŷat and êt
o

respectively. The second sequence is restricted to events in
Σo ∪Σu. This is the key idea in the diagnosability test which
makes it possible to identify two sequences of events that
have the same observable events and only the first of which
contains a failure event.

The formulae that connect the two event sequences require
that observable events take place in both sequences whenever
they take place.

(
∨

o∈δ(e) e
t
o) ↔ et for all e ∈ Σo

(
∨

o∈δ(e) ê
t
o) ↔ et for all e ∈ Σo

To avoid trivial cycles we require that at every time point
at least one event takes place.∨

e∈Σo

et ∨
∨

e∈Σu∪Σf ,o∈δ(e)

et
o ∨

∨
e∈Σu,o∈δ(e)

êt
o

The conjunction of all the above formulae for a givent is
denoted byT (t, t+ 1). A formula for the initial states0 is

I0 =
∧

({a0 ∧ â0|a ∈ A, s0(a) = 1}
∧

∧
{¬a0 ∧ ¬â0|a ∈ A, s0(a) = 0}).

We define a formula that finds a pair of infinite executions
(in the form of a cycle) with the same observable events and
a failure in one execution but not in the other.

ΦT
n = I0 ∧ T (0, 1) ∧ · · · ∧ T (n− 1, n)∧∨n−1

t=0

∨
e∈Σf

∨
o∈δ(e) e

t
o∧∨n−1

m=0(
∧

a∈A ((an ↔ am) ∧ (ân ↔ âm)))



n = 9

Figure 1: Parametern in the diagnosability test with several
potential cycle lengths

m = 3, n = 9

Figure 2: Parametersm andn in the diagnosability test

The possible cycles represented byΦT
n are illustrated in Fig-

ure 1. The parametern controls the number of states in the
sequence, and the last state must equal one of the preceding
states so that a cycle is formed.

The diagnosability question can also be formalized with a
fixed starting pointm for the cycle (Figure 2.)

ΦT
m,n = I0 ∧ T (0, 1) ∧ · · · ∧ T (n− 1, n)∧∨n−1

t=0

∨
e∈Σf

∨
o∈δ(e) e

t
o∧∧

a∈A ((an ↔ am) ∧ (ân ↔ âm))

We show that the formulaeΦT
n perform the diagnosability

test correctly. Proofs forΦT
m,n are analogous.

Lemma 3.1 Let T = 〈A,Σo,Σu,Σf , δ, s0〉 be a succinct
transition system andn a positive integer. The formula
ΦT

n is satisfiable if and only if there are sequencesσ =
(E0, . . . , En−1) and σ̂ = (Ê0, . . . , Ên−1) of parallel events
in T such that

1. (E0 ∪ · · · ∪ En−1) ∩ Σf 6= ∅,

2. (Ê0 ∪ · · · ∪ Ên−1) ∩ Σf = ∅,

3. Ei ∪ Êi 6= ∅ for all i ∈ {0, . . . , n− 1},
4. π(σ) = π(σ̂), and

5. there are executionss0, . . . , sn of σ and ŝ0, . . . , ŝn of σ̂
in T such thats0 = ŝ0 andsm = sn and ŝm = ŝn for
somem ∈ {0, . . . , n− 1}.

Proof: Sketch: Proof of the equivalence from left to right
is a demonstration that a valuation that satisfiesΦT

n can be
mapped toσ, σ̂ and executionss0, . . . , sn andŝ0, . . . , ŝn that
satisfy the required properties.

Proof from right to left is by constructing a valuation of all
propositional variables inΦT

n based onσ, σ̂ and the execu-
tions s0, . . . , sn and ŝ0, . . . , ŝn, and then showing that each
conjunct ofΦT

n is satisfied by that valuation. �

Theorem 3.2 For a succinct transition systemT , ΦT
n is sat-

isfiable for somen ≥ 1 if and only ifT is not diagnosable.

Proof: Sketch: We show thatT is not diagnosable iff for some
n the right hand side of the equivalence in Lemma 3.1 holds.

Assume thatT is not diagnosable. Hence there are infinite
sequencesσ = (E0, E1, E2, . . .) andσ̂ = (Ê0, Ê1, Ê2, . . .)

of parallel events inT such thatπ(σ) = π(σ̂) andσ con-
tains a failure event and̂σ does not. Lets0, s1, s2, . . . and
ŝ0, ŝ1, ŝ2, . . . be the corresponding state sequences.

SinceT has only a finite number of states, there are some
m andn such thatm < n and sn = sm and ŝn = ŝm

and Σf ∩ Ek 6= ∅ for somek ∈ {0, . . . , n − 1}. Now
(E0, . . . , En−1) contains a failure event and(Ê0, . . . , Ên−1)
does not, and the sequences satisfy the requirements in the
right hand side of the equivalence in Lemma 3.1 except for
condition 3, which can be satisfied by deleting thoseEi and
Êi for whichEi ∪ Êi = ∅.

For the implication from right to left assume that the right
hand side of Lemma 3.1 holds. Now the two sequences
(E0, . . . , En−1) and (Ê0, . . . , Ên−1) yield the infinite se-
quencesσ = E0, . . . , En−1, Em, . . . , En−1, . . . and σ̂ =
Ê0, . . . , Ên−1, Êm, . . . , Ên−1, . . . with π(σ) = π(σ̂) so that
σ contains a failure event and̂σ does not. HenceT is not di-
agnosable. �

Search for the proof of non-diagnosability with formulae
ΦT

n leads to a one-dimensional search problem for the value
of n, and withΦT

m,n the problem is two-dimensional. The
standard solution method in the one-dimensional case is to
test the satisfiability ofΦT

1 , thenΦT
2 and so on, until a satisfi-

able formula is found. There are also parallelized algorithms
that may find a satisfiable formula much faster than this se-
quential method[Rintanenet al., 2006].

4 Showing Diagnosability
For a system that is actually diagnosable, the formulae in the
previous section are not very practical for showing diagnos-
ability because there is no simple way to guarantee that the
parametern is high enough so that all reachable states with
a failure event have been covered. The most obvious upper
bound forn is the cardinality of the set of all states, which is
often impractically high: forq state variables one would be
forced to considern = 22q. Solutions to this problem have
been proposed[Sheeranet al., 2000] but they work for spe-
cific types of transition systems only or they step outside the
SAT framework[McMillan, 2003].

However, in many cases it is not necessary to include a
complete reachability test. It may be sufficient to use a for-
mulaρ which gives anupper boundto the set of state pairs
(s, ŝ) in the twin plant that could be reached by event se-
quencesσ = (E0, . . . , Ek) andσ̂ = (Ê0, . . . , Êk) such that
π(σ) = π(σ̂) and(Ê0 ∪ · · · ∪ Êk) ∩ Σf = ∅.

It may be possible to show that for no state pair satisfying
ρ there is an event sequence starting with a failure event in
the first component and another event sequence without fail-
ure events starting in the second component if both sequences
must have the same observable events. This can be tested by
using the following formula with increasing values ofn.

ΨT,ρ
n′ = ρ ∧ T (0, 1) ∧ · · · ∧ T (n− 1, n) ∧

∨
e∈Σf ,o∈δ(e) e

0
o

The formula is satisfiable iff after a failure in the first com-
ponent of the twin plant (but not in the second) an event se-
quence of lengthn with the same observable events in both



components can take place. Hence, if the formula is unsatis-
fiable, the behavior after a failure necessarily differs from the
behavior without a failure, and the system is diagnosable.

The incompleteness of this test is caused by the approx-
imate nature ofρ: if ρ represents too many unreachable
states of the twin plant, then it may appear that distinguish-
ing between behavior with and without failure is not possible.
Hence the unsatisfiability of the formula is a sufficient but not
a necessary condition for diagnosability.

A complete positive and negative test for diagnosability is
now obtained by testing the satisfiability ofΦT

n for increas-
ing n interleaved with testing the satisfiability ofΨT,ρ

n′ for
increasingn′ and increasingly strong upper approximationsρ
of the reachable state pairs in the twin plant.

There are alternative ways how the formulaeρ for ap-
proximating reachability in the twin plant could be derived.
One approach is by polynomial time algorithms for comput-
ing setsV of 2-literal clauses that are true in all reachable
states[Rintanen, 1998]. If a state in the twin plant does
not satisfyρ =

∧
V it is unreachable from the initial state.

Other approaches to deriving tighter upper boundsρ could
be based on techniques for knowledge compilation[Selman
and Kautz, 1996] and OBDDs[Bryant, 1992] or DNNF[Dar-
wiche, 2001].

5 Experiments
The algorithm of Jiang et al.[2001] is impractical because it
relies on the explicit enumeration of all pairs of states. For a
transition system withn states, the twin plant consists ofn2

states. Starting fromn = 10000 the size of the twin plant is
too high for practically running their algorithm.

We demonstrate the much better scalability of our approach
(Section 3) by using a system that consists ofm identical in-
terconnected components. Each component has6 states. The
number of states of the whole system withC components
is therefore6C . There are some dependencies between the
states of neighboring components which means that not all
6C state combinations are actually possible. The twin plant
in the diagnosability test has a quadratic number62C of states,
which becomes infeasible for explicit state enumeration start-
ing from aboutC = 8 components.

Each component has22 events of which4 are observable.
We tested the diagnosability of a faulty event in one com-
ponent. To obtain bigger and bigger problems we increased
the number of components. The parametern for proving
non-diagnosability was 4 irrespective ofC, meaning that the
shortest path with a cycle has length 4.

Statistics on formulae representing the diagnosability prob-
lem are given in Table 1. The formulae forn = 3 are unsat-
isfiable and forn = 4 they are satisfiable. After the first
two columns forC andn we give the value of the formula
(whether it is satisfiable or not), the number of propositional
variables and clauses in the formula, and finally the time it
took a SAT solver to test satisfiability.

The experiments were run with a 1.73 GHz Pentium 4 com-
puter and the Siege SAT solver (version 4)[Ryan, 2003].
Since Siege is a randomizing SAT solver and the runtimes
vary across different runs, we ran it 10 times with each for-

C n val vars clauses runtime

40 3 F 31683 427136 0.01 0.01
0.01

40 4 T 41764 568154 0.35 0.33
0.38

60 3 F 47523 640736 0.01 0.01
0.01

60 4 T 62644 852274 1.94 1.54
2.35

80 3 F 63363 854336 0.01 0.01
0.01

80 4 T 83524 1136394 1.93 1.75
2.08

100 3 F 79203 1067936 0.01 0.01
0.01

100 4 T 104404 1420514 3.48 3.15
3.82

120 3 F 95043 1281536 0.03 0.03
0.03

120 4 T 125284 1704634 5.55 5.26
5.83

140 3 F 110883 1495136 0.03 0.03
0.03

140 4 T 146164 1988754 7.78 7.32
8.22

160 3 F 126723 1708736 0.03 0.03
0.04

160 4 T 167044 2272874 10.81 9.90
11.69

180 3 F 142563 1922336 0.06 0.06
0.06

180 4 T 187924 2556994 13.4512.22
14.57

200 3 F 158403 2135936 0.01 0.01
0.01

200 4 T 208804 2841114 20.4818.56
22.90

Table 1: Runtimes for diagnosability testing. The number of
components isC and the path length isn.

mula and computed 95 per cent confidence intervals for the
mean by using a standard boot-strapping method. These are
shown in the last column of Table 1 next to the runtime.

Unsurprisingly, there appears to be an exponential growth
in the runtimes, but for our system non-diagnosability can be
detected rather easily for systems with 160 or 200 compo-
nents and an astronomic number of states. The propositional
formulae are big, with one or two hundred thousand proposi-
tional variables and one or two million clauses, but efficient
SAT solvers can utilize the regularity of the transition sys-
tems to find the cyclic path in the twin plant efficiently. For
systems in which the components are more complicated or
in which the cycles witnessing non-diagnosability are longer,
the approach probably does not scale quite as far.

6 Related Work
Another approach to finding paths in graphs compactly rep-
resented in terms of state variables is based on ordered bi-
nary decision diagrams (OBDDs)[Bryant, 1992]. OBDDs
were very popular in computer-aided verification, especially
model-checking[Burch et al., 1994], until the introduction
of SAT based techniques[Biereet al., 1999] following their
success in AI planning[Kautz and Selman, 1996]. The main
disadvantage of OBDDs is their fast growth when the number
of state variables increases. Their main advantages are gen-
erality and flexibility. For instance, it is easy to detect that an
OBDD represents all reachable states, which is more difficult
for SAT as discussed in Section 4.

Cimatti et al.[2003] have expressed a narrow diagnosabil-



ity test, with only delaysd = 1, as a model-checking prob-
lem in a temporal logic, and used a general-purpose model-
checker NuSMV for testing diagnosability.

7 Conclusions
We have presented a SAT based approach to diagnosability
testing, and demonstrated its scalability to systems with bil-
lions of states. Earlier works, most notably by Jiang et al.
[2001], have relied on explicit enumeration of the states and
are feasible only for systems with a much smaller number of
states. The success of SAT for the diagnosability problems
parallels its successes in areas like model-checking and AI
planning, and has been made possible by the fast progress in
the development of efficient algorithms for the satisfiability
problem of the propositional logic.

A weakness of the SAT approach in comparison to for
example OBDD based techniques is that the diagnosability
test is better suited to detecting non-diagnosability than diag-
nosability. However, the same weakness is present in other
related SAT based techniques, including AI planning and
bounded model-checking, in which the presence of (short)
paths in transition graphs can be often easily detected, but the
absence of paths having a given property, without length re-
strictions, is often much more difficult to detect. We intend
to further investigate approximate reachability techniques for
proving diagnosability.
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