Numeric State Variables in Constraint-Based
Planning

Jussi Rintanen' and Hartmut Jungholt?

L Albert-Ludwigs-Universitit Freiburg
Institut flir Informatik
Am Flughafen 17, 79110 Freiburg im Breisgau
Germany
? Universitit Ulm
Fakultat fir Informatik
Albert-Einstein-Allee, 89069 Ulm

Germany

Abstract. We extend a planning algorithm to cover simple forms of
arithmetics. The operator preconditions can refer to the values of nu-
meric variables and the operator postconditions can modify the values of
numeric variables. The basis planning algorithm is based on techniques
from propositional satisfiability testing and does not restrict to forward
or backward chaining. When several operations affect a numeric variable
by increasing and decreasing its value in parallel, the effects have to be
combined in a meaningful way. This problem is especially acute in plan-
ning algorithms that maintain an incomplete state description of every
time point of a plan execution. The approach we take requires that for
operators that are executed in parallel, all linearizations of the operations
to total orders behave equivalently. We provide an efficient and general
solution to the problem.

1 Introduction

In automated planning and for example in generating counterexamples in veri-
fication of safety properties of transition systems, the goal is to find a sequence
of state transitions that lead from a given initial state to a state that satis-
fies certain properties. There are many possible ways of describing transition
systems. The most basic description used in automated planning is based on
operators that are applicable when a number of Boolean state variables are true
or false and that make a number of Boolean state variables true or false. Many
transition systems can be described by using this kind of operators. However,
the descriptions would be more concise if no restriction to two-valued Boolean
state variables were made. State variables with n possible values can always be
described with [log, | Boolean state variables. However, replacing an operator
description that refers to many-valued variables by ones that refer to Boolean
variables only leads to a big increase in the number of operators. This reduces
the efficiency of planning algorithms, and is therefore often not feasible.

Apart from the practical problems in reducing multi-valued state variables to
Boolean state variables, there are semantic problems related to parallelism that
are not addressed by that reduction. It is often the case that parallel operations
affect the same numeric variables, for example the amount of money. The re-
ductive approach to multi-valued variables in this case is not applicable because
operations affecting the same variables that other parallel operations refer to
in their preconditions, are not allowed. Therefore parallel operations have to be
given a semantics that is aware of numeric variables and operations on them. For
example, it should be possible to simultaneously execute a number of operations
that increase and decrease the amount of money so that under the semantics the
result is well-defined.

In this paper we investigate implementing parallel operations in a general
planning framework based on constraint propagation. The operators may in-
crease or decrease state variables with a fixed amount, or assign a fixed value
to a state variable. Despite the restricted form of changes we consider, the work
gives a solution to the problem of parallelism also for more general cases, for
example when state variables may be assigned new values that are complex
expressions that refer to constants and other numeric state variables.

2 Numeric State Variables in Operator Definitions

We extend the notion of operators with state variables that may take numeric
values. Numeric state variables may be referred to in operator preconditions, and
operators’ postconditions may change the values of the state variables. The basic
problems inherent in handling numeric state variables can be demonstrated with
integers and constant increments and decrements. Preconditions of operators
may include expressions R = [n..m] which requires that R > n and R < m.
Postconditions of operators may be assignments R :=n, R:= R+ n and R :=
R — n that respectively assign a specific value to R or increase or decrease the
value of R by n. We do not allow disjunctions of preconditions R = [n..m],
as this would complicate the reasoning we have to perform. Conjunctions of
preconditions R = [n..m] are equivalent to intervals that are intersections of the
conjunct intervals. Unbounded intervals can be formed with the constant infinite
o0 as [—oo..n] and [n..co]. The sum oo 4+ n for an integer n is co. Notice that
ordinary Boolean state variables can be understood as numeric variables, for
example by interpreting the interval [0..0] as false and the interval [1..1] as true.

3 Parallelism

Most conventional planners that allow parallelism, including planners of the
partial-order planning paradigm [7] and more recent planning algorithms [1],
restrict to cases where two parallel operations may not have variables in common
in their postconditions, and variables occurring in the postconditions of one may
not occur in the preconditions of the other. Two operators related in this way are
said to be dependent because executing one may disable or enable the execution

of the other, or falsify the effects of the other. The purpose of these restrictions
is to guarantee a well-defined meaning for parallelism: parallelism means the
possibility of interleaving the operators to a sequence in all possible ways, and
the effect of executing the operators has to be the same for all interleavings.

In many applications, for example when the variables represent money or
some physical resources, the requirements on parallel operators stated earlier
are too strict, and in some applications may prevent parallelism altogether. For
example, if all operators are associated with a cost and no two operators increas-
ing the cost may be executed in parallel, no parallelism is possible.

Therefore we decided to try to relax these requirements. It turns out that
interesting forms of parallelism, not considered in earlier work in planning, are
possible. A set of operators executed in parallel have to fulfill the requirement
used in earlier work on planning: parallelism is allowed as far as the execution of
a set of operators in all possible interleavings produces the same result. Instead
of using the syntactic condition used in connection with Boolean state variables,
we develop a more abstract criterion parallel operations have to fulfill, and show
that it can be implemented efficiently. It is not obvious how this can be done.

Ezample 1. Consider the operators R = [1..2] = R:= R+ 2 and R = [1..5] =
R := R+2. Initially R = 1. The operators can be interleaved in two ways. In the
first interleaving the first operator is executed first, the value of R is increased by
2 to 3, and then the second operator is executed, R getting the value 5. However,
the second interleaving does not lead to a legal sequence of operations. First the
second operator is applied, increasing the value of R to 3. Now the precondition
of the first operator is not true, and the interleaving does not represent a valid
execution. Hence the operators cannot be executed in parallel.

4 The Basis Algorithm

To investigate the problem of parallel updates of numeric state variables in prac-
tise, we decided to implement our techniques in an existing automated planner.
The reason for extending the algorithm presented by Rintanen [8] to handle nu-
meric state variables is that the algorithm subsumes both forward-chaining and
backward-chaining, as the algorithm can simulate them by making branching
decisions in a temporally directed manner starting from the goal state and pro-
ceeding towards the initial state, or vice versa. The algorithm by Rintanen is
motivated by the planning as satisfiability approach to classical planning [3].

Each run of the main procedure of the algorithm is parameterized by the
plan length. The main procedure is called with increased plan lengths 1, 2, 3,
4 and so on, until a plan is found. The algorithm maintains a state description
for each time point of the plan execution. This description is incomplete in the
sense that not all truth values of state variables need to be known. Initially, it
includes the unique initial state and a description of the goal states.

For a given plan length and initial and goal states, planning proceeds by
binary search. The algorithm chooses an operator o and a time point ¢, and

records in its data structures that operator o is applied at ¢ (or respectively
that is not applied at ¢.) Each decision to apply or not apply is followed by
reasoning concerning the new situation. For example for an applied operator its
preconditions are true at ¢t and postconditions are true at t + 1 and dependent
operators cannot be applied at t. The decision to not apply a certain operator at
t may indicate that a certain state variable retains its truth-value between ¢ and
t+1, thereby allowing to infer the value of the variable at ¢ if its value at t+1 was
known, and vice versa. A more detailed description of the constraint reasoning
involved has been published elsewhere [8]. Upon detecting the inexistence of
plans in the current subtree, the algorithm backtracks.

Figure 1 shows a part of a search tree produced by the algorithm. Oi rep-
resents a particular operator application (an operator and a time point), and
N-Oi that the operator application is not performed. Each arrow corresponds
to a decision to (not) apply a certain operator at a certain point of time, and
inferred applications and inapplications of other operations. For example, in the
first subtree of the first child node of the root, choosing to not apply O2 leads
to inferring the operation O3.

o1 N-O1

N-O2 02
o3

N-O4/\ O4 O3 N-O3
O

Fig. 1. Part of a search tree of the planning algorithm

When reaching a leaf node in the search tree without detecting any incon-
sistencies, that is, we have committed to the application and non-application of
all operators at all time points, a plan has been found.

An important technique discovered in the context of algorithms for propo-
sitional satisfiability is detection of failed literals by unit resolution [6]. This
technique in the setting of our algorithm proceeds as follows. An operation is
labeled APPLIED (respectively NOT-APPLIED), and the inferences directly
following from this are made. If an inconsistency is found, the operator must
be labeled NOT-APPLIED instead (respectively APPLIED.) This technique is
very useful because it allows to infer operator application and inapplications by
inexpensive (low polynomial time) computation, in many cases leading to a big
reduction in the depth of the search tree. A linear reduction in the search tree

depth corresponds to an exponential reduction in the number of nodes in the
search tree and consequently in the computation time.

5 Extension to the Basis Algorithm

The initial state of a problem instance specifies the values of all numeric state
variables uniquely, and the goal specifies values of some numeric state variables
as an interval. When the main program of the planner is run, all the processing
of numeric state variables goes through a single function call that indicates that
the main program has decided to apply or not to apply a certain operator. In
addition, there are functions for registering a backtracking point and for undoing
all the changes done since the previous backtracking point was registered.

From the point of view of numeric state variables, the algorithmic question
that has to be solved is the following. Given a sequence of operators, labeled
APPLIED or NOT-APPLIED (corresponding to a directed path starting from
the root of the tree in Figure 1), decide whether this information is consistent
with the initial values of the variables, with the values determined by the goal,
and with the intermediate values inferred for the variables. Consistency here
means that there is a plan execution (and hence also a plan) that executes
operations labeled APPLIED and does not execute operations labeled NOT-
APPLIED. Executing an operator means that its preconditions are true and
the changes that take place exactly correspond to the changes caused by the
operations that are executed.

For the correctness of the planning algorithm, the constraint reasoner has to
satisfy the following two requirements.

1. When all operator applications have been labeled, an inconsistency must be
reported if there are no executions where exactly the APPLIED operations
are performed.

2. If an inconsistency is reported, there may not be executions that apply
operations labeled APPLIED and do not apply operations labeled NOT-
APPLIED.

These requirements for example allow refraining from doing any constraint
reasoning as long as some operation applications are not labeled. This strategy,
even though correct, would not be very efficient as there are usually a lot of
possibilities of detecting inconsistencies much earlier and to avoid traversing
parts of the search tree that do not contain plans.

For simplicity of presentation, in the following we discuss the case with only
one numeric state variable R. Inferences performed for different numeric variables
do not interact and are done in complete separation. The value of R at a time
point t is represented by R;.

The two kinds of changes in state variables are handled differently. Assign-
ments R :=n at ¢ are simply performed by assigning R; := [n..n]. Assignments
obviously cannot be performed in parallel with other assignments or increments

or decrements because different linearizations would give different results. The
more complicated case is that of increments and decrements.

For reasoning about the values of R efficiently, we introduce the following
auxiliary variables.

M} Maximum possible increase at time t. This is the sum of the increases of
operators that are not labeled NOT-APPLIED at ¢, minus the decreases of
operators that are labeled APPLIED at ¢.

MP Maximum possible decrease at time ¢. This is symmetrically the sum of the
decreases of operators that are not labeled NOT-APPLIED at ¢, minus the
increases of operators that are labeled APPLIED at ¢.

I] Maximum intermediate increase at time ¢. This is the sum of increases of
operators labeled APPLIED at t. The variable is needed for the test that
the preconditions are satisfied under all interleavings.

IP Maximum intermediate decrease at time t. This is the sum of decreases of
operators labeled APPLIED at t.

When all operator applications have been labeled, M} = —MP = 1] — 1P
for all . The values of these auxiliary variables can be recomputed every time
they are needed. Alternatively, and more efficiently, they can be incrementally
maintained when operations get labels. Initially, M/ is assigned the sum of
increments of R in postconditions of all operators for all ¢, M similarly the
sum of decrements of R, and I} and I are assigned 0.

When an operator that increases R by n is labeled APPLIED at ¢, set M :=
MP —nand I] .= I +n.

When an operator that decreases R by n is labeled APPLIED at ¢, set M/ :=
M —n and IP = IP +n.

When an operator that increases R by n is labeled NOT-APPLIED at ¢, set
M/ = M] —n.

When an operator that decreases R by n is labeled NOT-APPLIED at ¢, set
MP = MP —n.

The following rules for propagating constraints on neighboring values of R
are needed. The first two are applied only when all operators making constant-
value assignments to R at t are labeled NOT-APPLIED. The rules are applied
whenever some of the variables involved change.

1. If Rt = [a..b], then Rt+1 = Rt+1 N [CL - MtD..b + MtI]

2. If Ryyq = [a..b], then Ry := Ry, N[a— MI.b+ MP].

3. If an operator with precondition R = [a..b] is applied at ¢, then R; :=
Rt N [ab]

When a number of operators are applied in parallel at ¢, it is not sufficient to
test that the preconditions of the operators are satisfied at ¢. It is also necessary
to test that the preconditions are satisfied in all intermediate states of executions
of all linearizations of the operators. The standard interpretation of parallelism
requires this: all interleavings/linearizations have to be possible and the result
of executing the operations has to be the same in all cases.

The test that the executions of all linearizations are possible is based on the
auxiliary variables I} and IP that indicate how high and how low the value
of the state variable can get when performing the execution of the operators
between ¢ and ¢t + 1.

Assume that R = [a..b] at t. Now the value of R can get as high as a + I}
under some linearization of the operators executed between t and t + 1 (and
higher if the value turns out to be higher than a, for example b), and as low
as b — IP. We have to test that the preconditions of none of the operators are
violated under any of the linearizations.

Consider an operator o with the precondition R = [p..q] that does not affect
the value of R. Now if b — I” < p, then there is a linearization of the operators
during the execution of which the precondition of o is not fulfilled: execute first
all operators that decrease the value of R. Similarly, if a + I/ > ¢, we have
detected an inconsistency.

In the general case the operator o may have a precondition R = [p..q] and also
affect the value of R. Because the change caused by o cannot affect the fulfillment
of its own precondition, the effect of o on the value of R has to be ignored when
testing the precondition of o with respect to all interleavings. If o increases R by
n, define n™ = n and n~ = 0. If 0 decreases R by n, define n™ = 0 and n~ = n.
Now we can state the test for operator preconditions under parallelism in the
general case. Assume that the value of R at t is [a..b]. If b — (IP —n™) < p, we
have detected an inconsistency. Similarly, if a + (I} —n*) > g, we have detected
an inconsistency. These checks are subsumed by the following constraint on the
value of R.

R,:=RiNp+ (ItD —n7).q— (ItI —n™)]

This constraint stems from the possibility of executing all other operators
that increase (or decrease) R before executing o. This way the intermediate
value of R might violate the precondition of 0. To avoid this violation, the initial
value of R has to satisfy the constraint.

The correctness of the linearization test may not be obvious, for example
whether the test allows all those sets of parallel operations that can be executed
in any order with the same final result. Assume that no execution violates the
precondition of a particular operator. Then we have to be able to first execute all
decrementing (incrementing) operators and the particular operator immediately
afterwards so that the lower-bound (upper-bound) of the precondition is not
violated. This is exactly the test we perform.

Ezample 2. Consider the operators R = [1..5] = R:= R+ 2 and R = [4..6] =
R := R — 2 that are applied in parallel at ¢. From the preconditions we directly
get the constraint Ry = [4..5]. From the precondition of the first operator under
the interleaving consideration we get R; := R; N [1+ (2 —0)..5 — (2 — 2)]. From
the second operator we get Ry := R, N[4+ (2 —2)..6 — (2 — 0)]. Hence R; :=
[4..5]N[3..5]N[4..4] = [4..4], and 4 is the only possible value for R at ¢: otherwise
there would be an interleaving in which one of the preconditions is violated.

For example for the initial value R = 5, executing the first operator makes the
precondition of the second false.

We illustrate the propagation of constraints and the treatment of parallel
operators with two further examples.

Ezample 3. Consider two operators that may respectively increase the value of
R by 5 and decrease the value of R by 2. Initially the value of R is 0, and at
time point 3 it is 1. We construct a sequence of operations that take us from the
initial value 0 to the goal value 1.

The computation of the values of R at t € {1,2} is based on the values of R
at 0 and 3 and the values of M] and M. For example, the value of R; is the
intersection of [0 — MP..0 + M{] and [1 — M{ — M{.1 4+ MP + MP], that is

[—2..5] N [—9..5] = [—2..5]. (See the leftmost table below.) Now we apply op-2 at
1 and commit to not applying op5 at 1. (See the rightmost table below.)
t 0 1 2 3 t 0 1 2 3
R:|[0..0] [—2..5] [—4..3] [1..1] R|[0..0] [-2..5] [—4..3] [1..1]
MI| 5 5 5 M| 5 2 5
MP| 2 2 2 MP| 2 2 2
If o 0 0 If o 0 0
IPl 0 0 0 IPl 0 2 0
opd opd F
op-2 op-2 T

And we apply opb at 2 and commit to not applying op-2 at 1. (See the
leftmost table below.) And finally, the only possibility left is to apply op-2 at 0.
(See the rightmost table below.)

t 0 1 2 3 t 0 1 2 3

R:|[0..0] [-2.. — 2] [-4.. — 4] [1..1] R:|[0..0] [-2.. — 2] [-4.. — 4] [1..1]
M5 -2 5 M -2 -2 5
MP 2 2 -5 MP 2 2 -5
I} 0 0 5 I} 0 0 5
P 0 2 0 1P 2 2 0
opd F T opd F F T
op-2 T F op-2| T T F

Next we consider an example in which it is essential to check the interleavings.

Ezample 4. There are three operations, getbDM, lose2DM and lose4dDM that
respectively change the value of R by 5, -2 and -4. The initial value of R is 5.
The decrementing operations have as their precondition that the value of R is
respectively at least 2 and at least 4.

This scenario could be viewed as transactions on somebody’s bank account.

We now try to schedule one instance of each of these operations on two points
of time that we call Monday and Tuesday (there may be Boolean variables and
a goal — invisible to the constraint reasoner — that enforces this task.) The initial

situation is as shown below on the left. Then we try to see whether it is possible
to apply both lose2DM and lose4DM on Monday (and not on Tuesday.) Before
applying the linearization constraints the situation is as shown below on the
right.

t| Mon Tue Wed tiMon Tue Wed
Ry|[5..5] [-1..10] [-7..15] Ry|[5..5]) [-1..4] [-1..9]
M5 5 ME 5
MtD 6 6 MtD 6 0
I} 0 0 I} 0 0
P 0 0 P 6 0
getb DM getb DM
lose2DM lose2DM T F
lose4aDM losedDM T F

The preconditions of both lose2DM and lose4dDM are true on Monday and
it still seems possible to achieve a positive balance for Tuesday as the interval
upper bound is 4. However, we have to apply the rules Ryon := Ryon N [2 +
(15, —2)..00— (I, —0)] = RyonN[6..00] (imposed by lose2DM), and Ryion :=
Ryon N4+ (IR, —4)..00 — (I, — 0)] = Ryon N [6..00] (imposed by lose4DM).
These both violate Ryjon = [5..5] and therefore indicate that whichever operator
is applied first, the precondition of the other would not be fulfilled.

Therefore we lose2DM and getbDM on Monday and lose4DM on Tuesday.

t|Mon Tue Wed
R:|[5..5] [8..8] [4..4]

MH 3 4

MtD -3 4

ItI 5 0

1P 2 4
getbDM| T F
lose2DM T F
lose4DM F T

6 Experiments

To evaluate the efficiency of the planner, we ran it on a number of benchmarks
earlier used in connection with another planner that handles numeric state vari-
ables [11] and extensions of some benchmarks used in connection with classical
planners [2]. Our current implementation handles only increments and decre-
ments in operator effects. Therefore in the benchmarks of Wolfman and Weld
[11] we replaced constant assignments (fill the tank of an airplane or a truck) by
increments (if the tank is less than half full, add fuel half the capacity.) We do
not expect this modification to affect the runtimes significantly.

In Table 1 we give runtimes for the logistics benchmarks. These are numeric
versions of the well-known logistics benchmarks for classical planners. The run-
times inside parentheses are for the computation after the plan length has been

determined. The total runtimes are given outside parentheses; in the LPSAT
case it is the sum of the runtimes of finding the plan (of length n) and showing
that plans of length n—1 do not exist [10]. Wolfman and Weld ran their program
LPSAT on a 450 MHz Pentium II that is probably slightly faster than the 296
MHz Sun Ultra we used. The number of non-leaf search tree nodes is for our
planner.

Table 1. Runtimes of four benchmarks on LPSAT and on our planner (in seconds)

problem|(|[LPSAT we nodes
log-a 20.35 (12.1)| 11.8 (6.0)] 47
log-b 591.2 (576)| 65.7 (23.1)| 80
log-c 849.7 (830)| 66.3 (23.7) 73
log-d ||> 3600 (> 3600)|227.6 (140.5)| 477

The logistics domain is very sensitive to the criteria according to which
branching variables are chosen. The benchmarks are solved efficiently because
the branching heuristic reliably guides the search to a plan needing no or very
little backtracking. An earlier version of our planner that did not perform all
possible inferences when evaluating branching variables and did not consider
numeric state variables in the branching heuristic was not able to solve these
benchmarks. The heuristic made early a wrong branching decision and this was
discovered only after going 20 or 30 nodes deep in the search tree. Finding the
way out by exhaustive search was not possible in a reasonable amount of time.

We also ran benchmarks from the trains domain of Dimopoulos et al. [2]. The
numeric versions of these benchmarks add constrains on the total number of trips
between cities. We determined the smallest possible numbers of trips with which
these benchmarks remain solvable, and forced the planner to find such solutions.
Both planners were run with post-serializable operations [2] which means that
parallelism for Boolean variables was allowed as long as there is one linearization
of the operators.

We ran three variants of this benchmark and give the results in Table 2. The
first runtimes are with numeric state variables and the second runtimes for the
original non-numeric versions. The runtimes in parentheses are for finding the
plan when the length is known. The total runtimes are given outside parentheses.

Table 2. Runtimes of three benchmarks on our planners (in seconds)

problem [[numeric nodes|non-numeric nodes
train-alO|| 135 (9.7)] 17| 13.0 (9.0)] 15
train-b12|| 69.7 (58.7) 14| 81.0 (69.5) 17
train-c13{/153.8 (103.8) 27(180.4 (124.7) 31

7 Related Work

Koehler [5] extends the Graphplan algorithm [1] to handle numeric state vari-
ables. The numeric preconditions and effects Koehler considers are more general
than the ones considered by us. She, for example, allows multiplication and
division of resource values by constants and linear equations involving two re-
source values. The main difference to our work is that Koehler allows only a
restricted amount of parallelism: two operators, one of which increases and the
other decreases a numeric state variable, cannot be executed in parallel. Par-
allel operations are often crucial in achieving efficient planning because for n
independent operators not all n! linearizations have to be considered separately.
The Graphplan framework restricts to backward-chaining and does not have the
generality satisfiability planning or constraint-based planning have.

Kautz and Walser [4] show how integer programming can be a basis for ef-
ficient domain-independent planning with numeric state variables. Their frame-
work makes it possible to directly minimize — for a fixed plan length — certain
numeric values, for example the number of operators in the plan or the maximum
value of a numeric state variable during a plan execution. Kautz and Walser also
consider parallel operations like we do. Their main results are based on a local
search algorithm that is not capable of determining the inexistence of plans sat-
isfying certain properties; for example that there are no plans of certain length.
Our planning algorithm systematically goes through the search space represent-
ing all possible plans and is therefore capable of determining the inexistence of
plans having a certain property.

Vossen et al. [9] do classical planning by translating problem instances to
integer programming. They use a standard integer programming solver and still
are able to show that integer programming provides a solution method for clas-
sical planning that approaches the efficiency of general-purpose satisfiability al-
gorithms on the same problems. There is the obvious possibility to extend the
translations to cover numeric state variables. This is however not discussed fur-
ther by Vossen et al.

Wolfman and Weld [11] present LPSAT, a combination of decision proce-
dures for propositional satisfiability and linear programming. For satisfiability
they use a variant of the Davis-Putnam procedure, and for linear programming
an implementation of the Simplex algorithm. The algorithm used by Wolfman
and Weld is systematic and is therefore capable of reporting the inexistence of
solutions.

8 Conclusions

Obvious extensions to our framework of numeric variables are more complex
operator preconditions and more complex effects of operators. In this work we
have restricted to very simple operator preconditions to make it possible to rep-
resent incompletely known values of numeric variables as intervals. For example
disjunctive preconditions would require unions of intervals, and this leads to

more complex constraint reasoning. Also more complex updates make the con-
straint reasoning more complicated. However, the problems of parallel updates
are present in the current framework in their full extent, and we have presented
solutions to these problems. For incorporating more complex updates in the
current framework, techniques from reasoning with more complex arithmetic
expressions could be directly applied.

Acknowledgements

This research was funded by the Deutsche Forschungsgemeinschaft SFB 527 and
carried out while the first author was at the University of Ulm.

References

1.

10.
11.

Avrim L. Blum and Merrick L. Furst. Fast planning through planning graph
analysis. Artificial Intelligence, 90(1-2):281-300, 1997.

. Yannis Dimopoulos, Bernhard Nebel, and Jana Koehler. Encoding planning prob-

lems in nonmonotonic logic programs. In Proceedings of the Fourth European Con-
ference on Planning (ECP’97), pages 169-181. Springer-Verlag, September 1997.

. Henry Kautz and Bart Selman. Pushing the envelope: planning, propositional

logic, and stochastic search. In Proceedings of the Thirteenth National Conference
on Artificial Intelligence and the Eighth Innovative Applications of Artificial Intel-
ligence Conference, pages 1194-1201, Menlo Park, California, August 1996. AAAI
Press / The MIT Press.

. Henry Kautz and Joachim Walser. State-space planning by integer optimization.

In Proceedings of the Sizteenth National Conference on Artificial Intelligence, pages
526-533, 1999.

. Jana Koehler. Planning under resource constraints. In Proceedings of the 13th

European Conference on Artificial Intelligence, pages 489-493. John Wiley & Sons,
1998.

. Chu Min Li and Anbulagan. Heuristics based on unit propagation for satisfiability

problems. In Proceedings of the 15th International Joint Conference on Artificial
Intelligence, pages 366-371, Nagoya, Japan, August 1997.

. David A. McAllester and David Rosenblitt. Systematic nonlinear planning. In T. L.

Dean and K. McKeown, editors, Proceedings of the 9th National Conference on
Artificial Intelligence, pages 634—639, Anaheim, California, 1991. The MIT Press.

. Jussi Rintanen. A planning algorithm not based on directional search. In A. G.

Cohn, L. K. Schubert, and S. C. Shapiro, editors, Principles of Knowledge Repre-
sentation and Reasoning: Proceedings of the Sizth International Conference (KR
’98), pages 617-624, Trento, Italy, June 1998. Morgan Kaufmann Publishers.

. Thomas Vossen, Michael Ball, Amnon Lotem, and Dana Nau. On the use of integer

programming models in Al planning. In Thomas Dean, editor, Proceedings of the
16th International Joint Conference on Artificial Intelligence, volume I, pages 304—
309, Stockholm, 1999. Morgan Kaufmann Publishers.

Steven A. Wolfman, August 1999. email correspondence.

Steven A. Wolfman and Daniel S. Weld. The LPSAT engine & its application to
resource planning. In Thomas Dean, editor, Proceedings of the 16th International
Joint Conference on Artificial Intelligence, volume I, pages 310-315, Stockholm,
1999. Morgan Kaufmann Publishers.

Appendix: Sample Output from the Planner

The following is output from the planner on a simplified logistics problem. The
output is after the planner has reached plan length 7 and has not yet performed
any search.

01234567
at (bostruck,bosairpo) F TTFF
at(bostruck,bospo) T FFIT
at(pl,bosairpo) FFFFTFFF
at(pl,bospo) FFFFFFFT
at(pl,laairpo) TTFFFFFF
at(pl,lapo) FFFFFFFF
at(planel,bosairpo) TFFTT
at(planel,laairpo) FTTFF
in(pl,bostruck) FFFFFTTF
in(pl,planel) FFTTFFFF
drive-truck(bostruck,bosairpo,bospo,bos) . ..T.
drive-truck(bostruck,bospo,bosairpo,bos)
fly-plane-bos-la(planel) T...
fly-plane-la-bos(planel) ..T..
load-plane(planel,pl,bosairpo)
load-plane(planel,pl,laairpo) .T.....
load-truck(bostruck,pl,bosairpo)T..
load-truck(bostruck,pl,bospo)
refuel-plane(bosairpo)
refuel-plane(laairpo)
refuel-truck(bostruck,bosairpo)
refuel-truck(bostruck,bospo)
unload-plane(planel,pl,bosairpo) ...T...
unload-plane(planel,pl,laairpo)
unload-truck(bostruck,pl,bosairpo)
unload-truck(bostruck,pl,bospo) T

Variable 0 1 2 3 4 5 6

bostruck.fuel 100_ 100 80_ 100 40_ 100 0_ 100 -20_ 160 20_ 220 0_ 200

mpi: 0 0 0 60 60 -20 0
mpd: 20 40 40 20 0 20 0
ami: 0 0 0 0 0 0 0
amd: 0 0 0 0 0 20 0

planel.fuel 400_ 400 250_ 250 250_ 250 100_ 100 100_ 300 -50_ 500 -350_ 900
mpi: -150 0 -150 200 200 400 400
mpd: 150 0 150 0 150 300 300
ami: 0 0 0 0 0 0 0
amd : 150 0 150 0 0 0 0

