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Chapter 19

Planning and SAT

Jussi Rintanen

Planning in Artificial Intelligence is one of the earliest applications of SAT
to solving generic search problems. The planning problem involves finding a
sequence of actions that reaches a given goal. Such an action sequence and an
associated state sequence correspond to a satisfying assignment of a propositional
formula which can be easily constructed from the problem description.

19.1. Introduction

Planning in artificial intelligence is the process of finding a sequence of actions
that reaches a predefined goal. The problem is usually expressed in terms of a
description of an initial state, a set of actions, and a goal state. In the most basic
form of planning, called classical planning, there is only one initial state and the
actions are deterministic.

In their 1992 paper, Kautz and Selman suggested that the classical planning
problem could be solved by translating it into a propositional formula and testing
its satisfiability [KKS92]. This approach was in strong contrast with earlier works
on planning which viewed planning as a deductive problem or a specialized search
problem. At first, this idea did not attract much interest, but in 1996 Kautz and
Selman demonstrated that the best algorithms for SAT together with improved
translations provided a competitive approach to classical planning [KS96].

The success of SAT in planning suggested the same approach to solving other
similar problems, such as model-checking in computer-aided verification and val-
idation. A SAT-based approach to model-checking properties expressed in the
linear temporal logic LTL [Pnu77] was proposed soon after the success of plan-
ning as satisfiability became more widely known [BCCZ99].

Following the work by Kautz and Selman, similar translations of planning into
many other formalisms were proposed: nonmonotonic logic programs [DNK97],
mixed integer linear programming [KW99, WW99, VBLN99], and constraint sat-
isfaction problems CSP [vBC99, DKO01].

The classical planning problem is PSPACE-complete [Byl94], so there are pre-
sumably (assuming P#PSPACE) no polynomial time translations from classical
planning into SAT. The formulae that represent the classical planning problem


https://www.iospress.nl/book/handbook-of-satisfiability-2/
https://ebooks.iospress.nl/ISBN/978-1-64368-161-0/

may, in the worst case, be exponential in the size of the problem instance. How-
ever, the formula size is determined by a natural parameter which tends not to be
very high in practically interesting cases: the plan length. Most classes of plan-
ning problems are solvable with plans of a polynomial length, which means that
the corresponding propositional formulae have a polynomial size. So in practice
it is feasible to reduce the planning problem to SAT.

The underlying idea in using SAT for planning is to encode the bounded plan
existence problem, i.e. whether a plan of a given length n exists, as a formula
in the classical propositional logic. The formula for a given n is satisfiable if and
only if there is a plan of size n. Finding a plan reduces to testing the satisfiability
of the formulae for different values of n.

The efficiency of the SAT-based approach is determined by three largely or-
thogonal components.

1. Efficient representations ¢,, of the planning problem for a given plan length
n. This is the topic of Sections 19.3 and 19.4.

2. Efficient algorithms for testing the satisfiability of ¢,,.

3. Algorithms for choosing which values of n to consider to find a satisfiable
¢n as quickly as possible. This is the topic of Section 19.5.

Section 19.3 describes the most basic representation of planning in SAT, and
the most important improvements to it to achieve efficient planning.

Section 19.4 introduces the notion of parallel plans [BF97, KS96] which is an
important factor in the efficiency of planning as satisfiability. In a parallel plan
there may be more than one action at each time point. The length parameter n
restricts the number of time points but not directly the number of actions. Differ-
ent notions of parallel plans can be defined, and for maintaining the connection
to sequential plans it is required that there is a parallel plan exactly when there
is a sequential plan, and moreover, mapping a given parallel plan to a sequential
plan should be possible in polynomial time.

Section 19.5 presents different strategies for making the satisfiability tests for
the bounded planning problem for different lengths.

Section 19.6 describes the extension of Kautz and Selman’s ideas to temporal
planning, in which actions have a real or rational valued duration and multiple
actions can temporally each other.

Section 19.7 discusses possibilities to reduce more general planning problems,
for example with nondeterminism and sensing, to SAT and its quantified exten-
sions.

19.2. Classical Planning

We consider planning in a setting where the states of the world are represented
in terms of a set X of Boolean state variables which take the value true or false.
Formulae are formed from the state variables with the connectives V and —. The
connectives A, — and <> are defined in terms of V and —. A literal is a formula of
the form x or —x where x € X is a state variable. We define the complements of
literals as T = —x and =z = z for all x € X. A clause is a disjunction [y V--- Vi,
of one or more literals. We also use the constant atoms T and L for denoting



true and false, respectively. Each state s : X — {0, 1} assigns each state variable
in X a value 0 or 1.
Actions change the state of the world.

Definition 19.2.1. An action over a set of state variables X is a pair (p,e)
where

1. p is a propositional formula over X (the precondition) and

2. e is a set of pairs f = d (the effects) where f is a propositional formula
over X and d is a set of literals over X. (In the planning literature, the
case in which f is not T is called a “conditional effect”.)

The meaning of f = d is that the literals in d are made true if the formula f
is true. For an action a = (p, e) its active effects in a state s are

la]s = [e]s = U{d\f =>dee,skE=f}

The action is executable in s if s = p and [a]s is consistent (does not contain
both = and —ax for any € X.) If this is the case, then we define exec,(s) as
the unique state that is obtained from s by making [a]s true and retaining the
values of the state variables not occurring in [a]s. For sequences aq;as;...;a, of
actions we define execq,.as:...:a,, (S) a8 execy, (- - - execy, (evecy, (s)) - --). For sets S
of actions and states s we define ezecg(s) as the result of simultaneously executing
all actions in S. We require that ezec,(s) is defined for every a € S and that the
set [S]s = U,cglals of active effects of all actions in S is consistent. For actions
a = {(p,e) and atomic effects [ of the form = and —x (for € X) define the effect
precondition EPCi(a) = \V{f|f = d € e,l € d} where the empty disjunction \/ ()
is defined as 1. This formula represents those states in which [ is an active effect
of a.

Lemma 19.2.1. For literals I, actions a and states s, | € [a]s if and only if

s = EPCi(a).

Let # = (X,1,A,G) be a problem instance consisting of a set X of state
variables; a state I over X (the initial state), a set A of actions over X, and a
formula G over X (the goal formula).

A (sequential) plan for 7 is a sequence o = as;...;a, of actions from A such
that exzec,(I) E G. This means that executing the actions in the given order
starting in the initial state is defined (the precondition of every action is true and
the active effects are consistent when the action is executed) and produces a state
that satisfies the goal formula. Sometimes we say that an action sequence is a
plan for A and I when we simply want to say that the plan is executable starting
from I without specifying the goal states.

19.3. Sequential Plans

Consider a problem instance (X,I, A, G). We define, for any ¢t > 0, the set
X @t = {zQt|z € X} of propositional variables which contains a variable 2@t for
every state variable x € X. The variable @t refers to the value of x in a state



at time ¢. The propositional variables refer to the values of = at different integer
time points. We will later use these superscripts with formulae ¢ so that ¢Qt
is the formula obtained from ¢ by replacing every x € X by the corresponding
x@Qt € XQt.

An action a = (p, e) can be represented as

7o =p@0A J\ [(EPC.(a)@0V (¢@0 A ~EPC-,(a)@0)) «» z@1].  (19.1)
rzeX

This formula expresses the precondition of the action and the new value of each
state variable x in terms of the values of the state variables before the action is
executed: a will be true if it becomes true or it was true already and does not
become false.

Lemma 19.3.1. Let s and s be states over X. Let so : XQ0 — {0,1} be a state
over XQO0 such that so(x) = s(x) for allx € X. Let s1 : XQ1 — {0,1} be a state
over XQ1 such that s1(x’) = §'(x) for all x € X. Then so U s1 = 74 if and only
if 8 = execy(s).

The formula for representing the possibility of taking any of the actions is

T(0)=\/ 7a- (19.2)

a€A

Later we will use this formula by replacing occurrences of the propositional vari-
ables in X@0 and X@1 by propositional variables referring to different integer
time points.

Lemma 19.3.2. Let s and s’ be states over X. Let so : X@Q0 — {0,1} be a state
over XQ0 such that so(z) = s(x) for allz € X. Let s; : XQ1 — {0,1} be a state
over X@1 such that si(x') = §'(x) for all x € X. Then so U s1 = 7, if and only
if s = execq(s). Then soUsy =T (0) if and only if s = execy(s) for some a € A.

Since the formula 7 (0) expresses the changes in the state of the world between
two time points by one action, the changes caused by a sequence of actions over
a sequence of states can be expressed by iterating this formula.

Theorem 19.3.3. Letm = (X, 1, A, G) be a problem instance. Lett = \{x@Q0|x €
X|s =z} AN{—2Q0|z € X, I = a}. The formula

(CANTO)ATA)A---AT(E—1)AGQt (19.3)

is satisfiable if and only there is a sequence ag,ay,...,a;_1 of t actions such that

execq, (- execy, (execy (1)) --+) = G.

A satisfying assignment represents the sequence of states that is visited when
a plan is executed. The plan can be constructed by identifying actions which
correspond to the changes between every pair of consecutive states.



19.3.1. Improvements

Thes basic representation of planning in the propositional logic can be improved
many ways, and effort in implementation technologies for the underlying SAT
solving can be critical for the scalability [Rin12b, Rin12a]. Next we briefly discuss
two powerful ways to improve the translations of planning into the propositional
logic.

19.3.1.1. Approximations of Reachability

Important for the efficiency of planning with SAT is that the search by a SAT
algorithm focuses on sequences of states that are reachable from the initial state.
Testing whether a state is reachable is as difficult as planning itself but there
are efficient algorithms for finding approximate information about reachability,
for example, in the form of dependencies between state variables. A typical
dependence between some state variables x1,...,x, is that at most one of them
has value 1 at a time, in any reachable state. Adding formulae —z; V —z; for all
ie€{l,...,n}tand j € {1,...,n} such that ¢ # j may improve the efficiency of the
satisfiability tests tremendously because no states need to be considered that are
later found not to be reachable from the initial state. This kind of dependencies
are called invariants. There are algorithms for finding invariants automatically
[Rin98, GS98, Bra0l, Rin08]. These algorithms run in polynomial time and find a
subset of the invariants that are 2-literal clauses. Invariants were first introduced
to planning in the form of muteres in the planning graphs of Blum and Furst
[BF97].

19.3.1.2. Factoring

Input languages for planning systems represent sets of actions as an action schema
together with objects by which the variables in the action schema are instantiated
in order to obtain the non-schematic (ground) actions of Section 19.2. The size
of the set of ground actions may be exponential in the size of the schematic rep-
resentation. Sometimes it is possible to reduce the size increase by representing
part of the instantiation process directly as a propositional formula. For example,
an action move(x,y,z) for moving an object « from location y to location z can be
represented by the parameters z € X, y € Y and z € Y where X is the set of all
objects and Y is the set of all locations. Instead of |X| x |Y|? propositional vari-
ables for representing the ground actions, only |X |+ 2|Y’| propositional variables
are needed for representing the possible parameter values of the move action.
This has been called a factored representation [KMS96, EMW97]. Factoring may
reduce the potential for parallelism (Section 19.4) in plans: in the move action
above, the action should be factored only with respect to the location parameters
y and z, as different objects can be moved in parallel, but any given object can be
moved only from one location to another. Factoring can speed up the planning
process substantially [RGPS09].



19.4. Parallel Plans

An important factor in the efficiency of SAT-based planners is the notion of par-
allel plans. Few plans are purely sequential in the sense that any two consecutive
actions have to be in the given order. For example, the last two actions in a
plan for achieving a A b could respectively make a and b true and be completely
independent of each other. The ordering of the actions can be reversed without
invalidating the plan. This kind of independence naturally leads to the notion of
partially ordered plans, which was first utilized in the connection of the so-called
non-linear or partial order approach to AI planning [Sac75, MR91]. Techniques
utilizing partial orders and independence outside planning include partial-order
reduction techniques [God91, Val91, ABHT97] for reachability analysis.

The highly influential GraphPlan planner [BF97] introduced a restricted no-
tion of partial ordering which turned out to be very effective for SAT-based plan-
ning [KS96]: a plan is viewed as a sequence of sets of actions.

In this section we discuss two forms of partially ordered plans and present
their translations into the propositional logic. The first definition generalizes
that of Blum and Furst [BF97]. The second was proposed by Dimopoulos et al.
[DNK97] and later formalized and applied to SAT-based planning [RHNOG].

19.4.1. V-Step Plans

The first definition of parallel plans interprets parallelism as the possibility of
ordering the actions to any total order.

Definition 19.4.1 (V-Step plans). For a set of actions A and an initial state I,
a V-step plan for A and I is a sequence T = (Sy,...,S;_1) of sets of actions for

some [ > 0 such that there is a sequence of states so,..., s (the execution of T')
such that
1. S0 — I, and
2. execq,,.. ;q,(si) is defined and equals s; 41 for every ¢ € {0,...,l — 1} and
every total ordering aq,...,a, of S;.

When active effects are independent of the current state and preconditions
are conjunctions of literals, Definition 19.4.1 exactly corresponds to a syntactic
definition of independence [RHNOG6]. In more general cases the correspondence
breaks down, and syntactically independent sets of actions are only a subclass of
sets of actions which can be ordered to any total order.

Testing whether a sequence of sets of actions is a V-step plan is in general
intractable [RHNOG6] which justifies syntactic rather than semantic restrictions on
parallel actions [BF97, KS96].

We define positive and negative occurrences of state variables in a formula.

Definition 19.4.2 (Positive and negative occurrences). We say that a state vari-
able a occurs positively in ¢ if positive(a, ¢) is true. Similarly, a occurs negatively



in ¢ if negative(a, @) is true.

positive(z, z) = true, for all z € X
positive(z, y) = false, for all {z,y} C X such that z £y
positive(z, ¢ V ¢') = positive(x, ¢) or positive(x, ¢')
positive(z, ~¢) = negative(z, ¢)

negative(z,y) = false, for all {z,y} C X
negative(z, ¢ V ¢') = negative(x, ¢) or negative(z, ¢’)
negative(z, —¢) = positive(z, @)

A state variable x occurs in ¢ if it occurs positively or negatively in ¢.

Definition 19.4.3 (Affect). Let X be a set of state variables and a = (p, €) and
a’ = (p', ¢’} actions over X. Then a affects o’ if there is € X such that

1. x € d for some f = d € c and x occurs in f for some f = d € ¢’ or occurs
negatively in p’, or

2. =z € d for some f = d € ¢ and x occurs in f for some f = d € ¢ or
occurs positively in p'.

An action a which affects another action @’ may prevent its execution or
change its active effects. This means that replacing a’;a by a;a’ in a plan may
make the plan invalid or change its execution.

Definition 19.4.4 (Interference). Let X be a set of state variables. Actions a
and a’ interfere if a affects a’ or a’ affects a.

If actions a and a’ do not interfere, then the sequences a;a’ and a’;a are
interchangeable. Non-interference is a sufficient but not a necessary condition for
interchangeability.

19.4.2. 3-Step Plans

A more relaxed notion of parallel plans was proposed by Dimopoulos et al.
[DNK97] and formalized and investigated in detail by Rintanen et al. [RHNO6].

Definition 19.4.5 (3-Step plans). For a set A of actions and an initial state I,

a 3-step plan is T = (So,...,S-1) € (2A)l together with a sequence of states
50, .-, S (the execution of T') for some [ > 0 such that

1. sp =1, and
2. for every i € {0,...,l — 1} there is a total ordering a1 < ... < a, of S;
such that s; 11 = ezecq,:.. .a, (S:)-

The difference to V-step plans is that instead of requiring that each step .S;
can be ordered to any total order, it is sufficient that there is at least one order
that maps state s; to s;+1. Unlike for V-step plans, the successor s; 1 of s; is not
uniquely determined solely by S; because the successor depends on the implicit
ordering of .S;. For this reason the definition has to make the execution sq, ..., s;
explicit.

The more relaxed definition of 3-step plans sometimes allows much more
parallelism than the definition of V-step plans.



Example 19.4.1. Consider a row of n Russian dolls, each slightly bigger than
the preceding one. We can nest all the dolls by putting the first inside the second,
then the second inside the third, and so on, until every doll except the largest
one is inside another doll.

For four dolls this can be formalized as follows.

a1 = (outl A out2 A empty2, {T = 1in2, T = —outl, T = —empty2})
as = (out2 A out3 A empty3, {T = 2in3, T = —out2, T = —empty3})
az = (out3 A outd A empty4, {T = 3ind, T = —out3, T = —empty4})

The shortest V-step plan nests the dolls in three steps: ({a1},{az},{as}). The
I-step plan ({a1, az2,as}) nests the dolls in one step.

Theorem 19.4.1. (i) Every V-step plan is a 3-step plan, and (ii) for every 3-step
plan T there is a V-step plan whose execution leads to the same final state as that
of T.

Similarly to V-step plans, testing the validity of 3-step plans is intractable in
the worst case [RHNO6]. One way of achieving tractability uses two restrictions.
All parallel actions are required to be executable in the current state (unlike for
V-step plans this does not follow from the definition), and parallel actions are
required to fulfil an ordered dependence condition based on Definition 19.4.3:
actions are allowed in parallel if they can be totally ordered so that no action
affects a later action. This means that the actions preceding a given action do
not change its effects or prevent its execution.

Theorem 19.4.2. Let A be a set of actions, I a state, T = (Sp,...,Si-1) € (2A)l,
and sq,...,s; a sequence of states. If

1. So — I,

2. for every i € {0,...,1 — 1} there is a total ordering < of S; such that if
a < a' then a does not affect a’, and

3. sit1 = execs,(s;) for every i € {0,...,1 —1},

then T is a 3-step plan for A and I.

Even though the class of 3-step plans based on affects is narrower than the
class sanctioned by Definition 19.4.5, much more parallelism is still possible in
comparison to V-step plans. For instance, nesting of Russian dolls in Exam-
ple 19.4.1 belongs to this class.

19.4.3. Optimality of Parallel Plans

The most commonly used measure for plan quality is the number of actions in
the plan. So the problem of finding an optimal plan is the problem of finding the
shortest sequential plan, or in terms of the satisfiability tests, finding an integer
t such that the formula for plan length ¢ — 1 is unsatisfiable and the formula for
plan length ¢ is satisfiable. For parallel plans the question is more complicated.
It is possible to find an optimal parallel plan for a given parallel length by using
cardinality constraints on the number of actions in the plans, but it seems that



finding an optimal parallel plan in the worst case reduces to testing the existence
of sequential plans [BRO5]: if there is a parallel plan with ¢ time points and n
actions, the optimality test may require testing whether there is a sequential plan
with n — 1 time points and n — 1 actions. Tests restricting to formulae with ¢
time points are not sufficient.

19.4.4. Representation in SAT

In this section we present translations of parallel plans into the propositional
logic. A basic assumption is that for sets S of simultaneous actions executed in
state s the state execg(s) is defined, that is, all the preconditions are true in s
and the set of active effects of the actions is consistent.

19.4.4.1. The Base Translation

Planning is performed by propositional satisfiability testing by producing formu-
lae ¢g, 1, @2, ... such that ¢; is satisfiable iff there is a plan of length [. The
translations for different forms of parallel plans differ only in the formulae that
restrict the simultaneous execution of actions. Next we describe the part of the
formulae that is shared by both definitions of parallel plans.

Consider the problem instance # = (X, I, A, G). Similarly to the state vari-
ables in X, for every action a € A we have the propositional variable a’ for
expressing whether a is executed at time point ¢ € {0,...,1 — 1}.

A formula @, ; is generated to answer the following question. Is there an
execution of a sequence of [ sets of actions that reaches a state satisfying G when
starting from the state I? The formula ®,; is conjunction of ¢ = A{z@0|z €
X,s E xz} ANA{—2Q0|z € X, I £~ z}, GQI, and the formulae described below,
instantiated with all ¢ € {0,...,1 —1}.

First, for every a = (p,e) € A there are the following formulae. The precon-
dition p has to be true when the action is executed.

a@t —pQt (19.4)

Then we define, for every z € X, the condition under which x becomes true
or false at step ¢

causes(x)@t = \/ (aQ(t — 1) A EPC,(a)Q(t — 1)) (19.5)
acA

causes(~z)@t = \/ (aQ(t — 1) A EPC-y(a)Q(t — 1)) (19.6)
acA

These formulas are used in defining when a state variable becomes true or
false at a given time point.

causes(x)Qt — xQt (19.7)
causes(—x)Qt — -z @t (19.8)



Second, the value of a state variable does not change if no action that changes it is
executed. Hence for every state variable x we have two formulae, one expressing
the conditions for the change of = from true to false,

(x@Qt A =zQ(t + 1)) — causes(—z)Q(t + 1) (19.9)
and another from false to true,
(mz@t A zQ(t + 1)) — causes(x)Q(t + 1). (19.10)

The formulae @ ;, just like the definition of ezecg(s), allow sets of actions in

parallel that do not correspond to any sequential plan. For example, the actions
(x,{T = —y}) and (y, {T = —z}) may be executed simultaneously resulting in a
state satisfying ~x A —y, even though this state is not reachable by the two actions
sequentially. But we require that all parallel plans can be executed sequentially.
Further formulae that are discussed in the next sections are needed to guarantee
this property.
Theorem 19.4.3. Let # = (X, I, A, G) be a transition system. Then there is
T = (So,...,5-1) € (2A)l so that sg,...,s; are states so that I = sq, s; E G,
and s;y1 = execs,(s;) for alli € {0,...,1 — 1} if and only if there is a valuation
satisfying the formula @ ;.

Proposition 19.4.4. The size of the formula ®,; is linear in | and in the size
of m.

Theorem 19.4.3 says that a sequence of actions fulfilling certain conditions
exists if and only if a given formula is satisfiable. The theorems connecting
certain formulae to certain notions of plans (Theorems 19.4.5 and 19.4.6) provide
an implication only in one direction: whenever the formula for a given value of
parameter [ is satisfiable, a plan of [ time points exists. The other direction is
missing because the formulae in general only approximate the respective definition
of plans and there is no guarantee that the formula for a given [ is satisfiable when
a plan with [ time points exists. However, the formula with some higher value of
[ is satisfiable. This follows from the fact that whenever a V-step or 3-step plan
(S0, ..., S1—1) with n = |Sg| + - - - +|S;—1| occurrences of actions exists, there is a
plan consisting of n singleton sets, and the corresponding formulae @, A @5
are satisfiable. The formulae ®% | represent the parallel semantics z for actions

A.

19.4.4.2. Translation of V-Step Plans

The simplest representation of the interference condition in Definition 19.4.4 is
by formulae
—|(a1@t/\ az@t) (1911)

for every pair of interfering actions a; and as. Define @Yq‘gfe’) as the conjunction

of the formulae (19.11) for all time points ¢t € {0,...,l — 71} and for all pairs of
interfering actions {a,a’} C A that could be executed simultaneously. There are
O(In?) such formulae for n actions. This can be improved to linear [RHNO06].

Theorem 19.4.5. Let 1 = (X, I, A, G) be a transition system. There is a V-step
plan of length | for m if @ A (I,Zszlfep is satisfiable.
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19.4.4.3. Translation of 3-Step Plans

The simplest efficient representation of 3-step plans imposes a fixed total ordering
on the actions and allows the simultaneous execution of a subset of the actions
only if none of the actions affects any action later in the ordering. There are
more permissive ways of guaranteeing the validity of 3-step plans, but they seem
to be difficult to implement efficiently, and furthermore, there are ways of identi-
fying most permissive total orderings as a preprocessing step by finding strongly
connected components of the graph formed by the affects relation on actions
[RHNOG].

The representation does not allow all the possible parallelism but it leads
to small formulae and is efficient in practice. In the translation for 3-step plans
the set of formulae constraining parallel execution is a subset of those for the
less permissive V-step plans. One therefore receives two benefits simultaneously:
possibly much shorter parallel plans and formulae with a smaller size / time points
ratio.

The idea is to impose beforehand an (arbitrary) ordering on the actions
ai,...,an and to allow parallel execution of two actions a; and a; such that

a; affects a; only if ¢ > j. The formula @isfelg is the conjunction of

—(a;Qt A a;Qt) if a; affects a; and i < j

for all a; and a; and all time points ¢ € {0,...,l — 1}. Of course, this restriction
to one fixed ordering may rule out many sets of parallel actions that could be
executed simultaneously according to some other ordering than the fixed one.

The formula @i‘i;’ep (similar to the translation for V-step plans in Section 19.4.4.2)
has a quadratic size because of the worst-case quadratic number of pairs of ac-
tions that may not be simultaneously executed. This can be improved to linear
[RHNOG].

Theorem 19.4.6. Let 7 = (X, I, A, G) be a transition system. There is a 3-step
plan of length 1 for m if @y A @isjez’ is satisfiable.

19.5. Finding a Satisfiable Formula

Given a sequence ¢, ¢1, . .. of formulae representing the bounded planning prob-
lem for different plan lengths, a satisfiability algorithm is used for locating a
satisfiable formula. The satisfying assignment can be translated into a plan. In
this section we describe three high-level algorithms that use the formulae ¢; for
finding a plan. We call them Algorithms S, A and B.

Algorithm S is the obvious sequential procedure for finding a satisfiable for-
mula: first test the satisfiability of ¢g, then ¢1, ¢2, and so on, until a satisfiable
formula is found. It has been used by virtually all works that reduce planning to
the fixed-length planning problem [KS92, BF97]. This algorithm has the property
that it always find a plan with the smallest number of time points. It can be used
for finding plans with the minimum number of actions if used in connection with
the sequential encoding of planning from Section 19.3.
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Figure 19.1. SAT solver runtimes for two problem instances and different plan lengths
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Figure 19.2. SAT solver runtimes for two problem instances and different plan lengths

If the objective is to find a plan with not necessarily the smallest number of
actions or time points, the Algorithm S is often inefficient because the satisfiabil-
ity tests for the last unsatisfiable formulae are often much more expensive than
for the first satisfiable formulae. Consider the diagrams in Figures 19.1, 19.2 and
Figure 19.3. Each diagram shows the cost of detecting the satisfiability or un-
satisfiability of formulae that represent the existence of plans of different lengths.
Grey bars depict unsatisfiable formulae and black bars satisfiable formulae. For
more difficult problems the peak formed by the last unsatisfiable formulae is still
much more pronounced.

Except for the rightmost diagram in Figure 19.2 and the leftmost diagram in
Figure 19.3, the diagrams depict steeply growing costs of determining unsatisfia-
bility of a sequence of formulae followed by small costs of determining satisfiability
of formulae corresponding to plans.

We would like to run a satisfiability algorithm with the satisfiable formula
for which the runtime of the algorithm is the lowest. Of course, we do not know
which formulae are satisfiable and which has the lowest runtime. With an infinite
number of processes we could find a satisfying assignment for one of the formulae
in the smallest possible time: let each processi € {0,1,2,...} test the satisfiability
of ¢;. However, an infinite number of processes running at the same speed cannot
be simulated by any finite hardware. Algorithms A and B attempt to approximate
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Figure 19.3. SAT solver runtimes for two problem instances and different plan lengths

procedure AlgorithmS()

i := 0;

repeat
test satisfiability of ¢;;
if ¢; is satisfiable then terminate;
=141

until 1=0;

Figure 19.4. Algorithm S

this scheme by using a finite number processes. Algorithm A uses a fixed number
n of processes. Algorithm B uses a finite but unbounded number of processes
which are run at variable rates.

19.5.1. Algorithm S: Sequential Testing

The standard algorithm for finding plans in the satisfiability and related ap-
proaches to planning tests the satisfiability of formulae for plan lengths 0, 1, 2,
and so on, until a satisfiable formula is found [BF97, KS96]. This algorithm is
given in Figure 19.4.

19.5.2. Algorithm A: Multiple Processes

Algorithm A (Figure 19.5) distributes plan search to n concurrent processes and
initially assigns the first n formulae to the n processes. Whenever a process finds
its formula satisfiable, the computation is terminated. Whenever a process finds
its formula unsatisfiable, the process is given the next unassigned formula. This
strategy can avoid completing the satisfiability tests of many of the expensive
unsatisfiable formulae, thereby saving a lot of computation effort.

Algorithm S is the special case with n = 1. The constant € determines the
coarseness of CPU time division. The for each loop in this algorithm and in the
next algorithm can be implemented so that several processes are run in parallel.
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1:  procedure AlgorithmA (n)

2: P = {¢07~~-a¢n71}§

3: next := n;

4: repeat

5: P = P

6: for each ¢ € P’/ do

7 continue computation with ¢ for e seconds;
8: if ¢ was found satisfiable then terminate;
9: if ¢ was found unsatisfiable then

10: P = PU{énext}\{o};
11: next := next + 1;

12: end if
13: end do

14: until 0=1

Figure 19.5. Algorithm A

1:  procedure AlgorithmB(~y)
2: t:=0;
3:  for each i > 0 do done[i] = false;
4:  for each ¢ > 0 do time[i] = 0;
5: repeat
6: t:=t+;
7 for each ¢ > 0 such that done[:] = false do
8: if time[i] + ne < t7* for some maximal n > 1 then
9: continue computation for ¢; for ne seconds;
10: if ¢; was found satisfiable then terminate;
11: timeli] := timel[i] + ne;
12: if ¢; was found unsatisfiable then done[i] := true; end if
13: end if
14: end do

15: until 0=1

Figure 19.6. Algorithm B

19.5.3. Algorithm B: Geometric Division of CPU Use

Algorithm B (Figure 19.6) uses an unbounded but finite number of processes.
The amount of CPU given to each process depends on the index of its formula:
if formula ¢y, is given t seconds of CPU during a certain time interval, then a
formula ¢;,7 > k is given 7' ~*¢ seconds. This means that every formula gets only
slightly less CPU than its predecessor, and the choice of the exact value of the
constant y €]0, 1] is less critical than the choice of n for Algorithm A.

Variable ¢, which is repeatedly increased by ¢, characterizes the total CPU
time ﬁ available so far. As the computation for ¢; proceeds only if it has been
going on for at most ¢y’ — € seconds, CPU is actually consumed less than ﬁ,
and there will be at time ﬁ only a finite number j < log, { of formulae for
which computation has commenced.

The constants n and ~ respectively for Algorithms A and B are roughly
related by v =1 — %: of the CPU capacity % =1 — ~ is spent in testing the first
unfinished formula. Algorithm S is the limit of Algorithm B when v goes to 0.

Algorithms A and B have two very useful properties [RHN06]. First, both al-
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Figure 19.7. Illustration of two runs of Algorithm B. When v = 0.5 most CPU time is spent
on the first formulae, and when the first satisfiable formula is detected also the unsatisfiability
of most of the preceding unsatisfiable formulae has been detected. With v = 0.8 more CPU is
spent for the later easier satisfiable formulae, and the expensive unsatisfiability tests have not

been completed before finding the first satisfying assignment.

gorithms can be arbitrarily much faster than Algorithm S. This is because testing
the satisfiability of some of the unsatisfiable formulae may be arbitrarily difficult
in comparison to the easiest satisfiable formulae. Second, both algorithms are at
most a constant factor slower than Algorithm S. This constant is n for Algorithm
A and 1% for Algorithm B. So even in cases in which these algorithms do not
improve on Algorithm S, the efficiency loss is bounded.

19.6. Temporal Planning

The SAT modulo Theories (SMT) [WW99, ABC*02] framework, which supports
numerical and other constraints in addition to Boolean ones, can be applied to
the solution of more general planning problems.

The first application of SAT extended with numerical constraints was by
Wolfman and Weld [WW99] to the classical planning problem with numerical
state variables. The notion of plans and executions are the same as in classical
planning. The difference is that in addition Boolean state variables, there are
numerical state variables which can be assigned values expressed as arithmetic
expressions.

Shin and Davis gave a systematic translation of an expressive planning lan-
guage into the SMT framework [SD05]. This is a major generalization of the
representations of classical planning as propositional formulas. Instead of a se-
quence of states, with a number of actions taking between any two consecutive
states, in temporal planning there can be multiple actions temporally overlapping
each other in different ways, and the execution of one action can span multiple
steps of the plan. This framework can be applied to a range of modelling lan-
guages [Rinl7], and as the number of steps of a plan is bounded similarly to
classical planning, the same solving strategies (Section 19.5) are applicable.

Here we sketch the main ideas of the type of encodings first proposed by Shin
and Davis [SD05] which have later been used for solving planning problems by
using SMT solvers.
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We use a simple formalization of temporal planning, with a set X of state
variables and actions as triples (p, d, €), where p is a propositional formula over X
just like in classical planning, and d > 0 is a rational duration of the action, and
e is a set of literals over X made true by the action. The precondition p has to
be true at the time point in which the action is taken, and the effects e become
true after time d.

Unlike in classical planning, timelines in temporal planning are continuous,
either rational or real valued, but it is still sufficient to represent explicitly only a
finite sequence of time points in which an action is taken or an effect of an action
takes place, just like in classical planning.

As before, [ denotes the index of the last step so that the [ 4+ 1 steps of a
plan are indexed from 0 to I. We use the same atomic propositions a@i and z@j
to indicate whether an action is taken or a state variable is true at a given step
1. Additionally, we associate an absolute time 7@i with each step. The numeric
inequalities

T@Qi > TQj (19.12)
for all 4 and j such that [ > j > ¢ > 0, forces the absolute time to be monotoni-
cally increasing. Next we express the properties of actions and state variables at
different steps of a plan.

We have the formula

a@i — pQi (19.13)

for the precondition p of action a, for every i € {0,...,1 —1}.

For an action ¢ = (p,d,e), define EPCj(a) = T iff [ € e and otherwise
EPCj(a) = L. Like earlier, we define causes(l)@i to denote the conditions under
which literal [ becomes true at step i. For temporal planning this can refer to
multiple earlier steps, as the last step might not be the one in which an action
affecting [ took place.

i—1
causes(x)Qi = \/ \/ (a@j A EPC,(a)@Qj A (1Qi — 7@Qj = d,)) (19.14)
a€A j=0

we denote the disjunction of all the conditions under which xz becomes true at
step ¢ € {0,...,l}. These formulas refer to atomic propositions for earlier steps.
Similarly causes(—x)@i for x becoming false. Hence when causes(1)@i is true, the
effect [ takes place.

causes(x)@Qi — xQj (19.15)

causes(—x)Qi — —z Q4 (19.16)

Frame axioms allow inferring that the value of a state variable remains unchanged.
(x@i A =2Q(7 — 1)) — causes(x) Qi (19.17)

(mzx@i A 2Q(7 — 1)) — causes(—z) Q3 (19.18)

When ¢ > 0, to guarantee that there is a step for every effect, we need

l
a@i— \/ (rQj — r@i=t). (19.19)
j=i+1
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Most temporal planning problems restrict the possibilities to overlap two
actions in various ways. Assume that no overlap for actions a and a’ is allowed,
and these actions respectively have durations d and d’. Now, if a is taken at ¢,
then a’ cannot be started before time ¢ + d, and if a’ is taken at ¢, then a cannot
be started before time t + d’, expressed by

l
a@i— N (a'@j— (rQj — 7@i > d)) (19.20)
j=i
l
a'@i— N\ (a@j— (rQj — 7@i > d')) (19.21)
Jj=t

For different limits on the concurrency of actions see the literature [SD05, Rin17].
Temporal planning can be reduced to plain SAT [RGS15], but as numerical
durations are not represented, a satisfying assignment is not guaranteed to corre-
spond to a valid plan, and multiple calls, with tigther Boolean constraints, may
be required to find one. Also, minimization of the durations of plans is harder.

19.7. Contingent Planning

Classical planning and temporal planning assume the world to be completely pre-
dictable. Nondeterminism and unpredictability, as well as limited observability,
complicate planning and reduce the possibilities of effective reductions to SAT.

With a polynomial bound on the number of actions in a plan, the com-
plexity of classical planning decreases from PSPACE-complete to NP-complete.
More general planning problems have a complexity far exceeding PSPACE: plan-
ning with nondeterministic actions and full observability is EXP-complete [Lit97],
with no observability EXPSPACE-complete [HJ00], and with partial observability
2-EXP-complete [Rin04]. Merely bounding plans to polynomial size will not de-
crease the complexity to NP. There are two options: either use a formalism harder
than NP, or impose further restrictions. Both options have been considered.

In planning with full or partial observability, a plan may have to handle differ-
ent contingencies in order to achieve its objectives (which is why these problems
are sometimes called contingent planning.) Plans can no longer be limited to se-
quences of actions, as different observations made during the execution may lead
to alternative courses of action, represented for example as a branching plan, or
a mapping from observations (and the execution state) to actions.

If both plan sizes and executions are restricted to be polynomial, the planning
problem is in ¥4 [Rin99]. Problems belonging to this complexity class correspond
to quantified Boolean formulas (QBF) [SM73] with the prefix 3V (Section 19.7.1).

Even stricter restrictions can reduce the complexity to NP. Chatterjee et al.
[CCD16] have shown that planning with partial observability, when the state
space is represented simply as a graph with states as nodes, is NP-complete, and
can therefore be reduced to SAT (Section 19.7.2).

For problems with very large state spaces, the explicit representation of all
states is not feasible. Geffner and Geffner [GG18] have shown that, for a relatively
broad class of contingent planning problems with full observability and actions
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and states represented in terms of state variables, reduction to SAT can still be
a competitive solution method (Section 19.7.3).

19.7.1. Contingent Planning in X% with QBF

In this section we discuss the use of quantified Boolean formulas for solving simple
contingent planning problems with a polynomial length bound, and more expres-
sive contingent planning problems with a size bound and other, more restrictive
conditions to bring the complexity down to NP.

The complexity class X5 corresponds to QBF with the prefix 3V. However,
the most natural translation of the planning problem into QBF has the prefix
3v3, corresponding to problems in 4. This discrepancy can be interpreted as
the power of QBF with prefix 3V3 to handle a generalized planning problem in
which the possibility of taking an action in a given state and computing the unique
successor state cannot be performed in polynomial time [Tur02]. In this section
we present the most obvious translation that uses the prefix 3v3. Translation with
prefix 3V is less intuitive [Rin07]. The planning problem with several initial states
is similar to the problem of finding homing or reset or synchronizing sequences of
transition systems [PB91].

The uncertainty about the initial state as well as the nondeterminism of
actions and the environment can be represented as state variables that can assume
arbitrary values and different ones at different steps of the executions. We call
these state variables the contingency variables.

Actions cannot change the values of the contingency variables, but the actions
can otherwise depend on them: contingency variables can occur in the actions’
preconditions and the condition parts of the effects, thereby affecting the appli-
cability of actions and the effects of actions.

We define a contingent planning problem as a tuple (X, C, I, A, G), where X
is the set of all state variables, C' C X is the contingency variables, I is a formula
for the initial states, A is the set of actions, and G is the formula for the goal
states. Here X, A, and G are like for classical in Section 19.2. The contingency
variables and the definition of I as a formula are where these definitions diverge.

Next we define a quantified Boolean formula that represents the problem of
finding a sequence of actions that leads from any of the initial state to any of the
goal states, under any possible combination of contingencies.

Define P = {a@ila € A,0 < i <[} for the set of atomic propositions rep-
resenting the action and thereby the plan. Define Z = {zQijz € C,0 < i <
I -1} U{z@Q0|z € X\C} for the values of the contingency variables at all points
of the execution, and also the values of all other state variables at the first step
of the execution (the initial state). Define F = {z@i|x € X,1 < i <[} for the
values of non-contingency state variables at all steps of the execution after the
initial state. The values of these state variables are determined unique by the
action variables and the values of the contingency variables on the previous steps.

Now the translation of the planning problem into QBF is as follows.

APYZAE (10— (T(0) A --- AT (1 — 1) A GQI)) (19.22)
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The formula says that there is a plan (expressed by P) such that for all
combinations of contingencies (expressed by Z), there is an execution (expressed
by E) that leads to a state that satisfies the goal formula G.

This QBF evaluates to true if and only such a plan exists. For a true QBF
the valuation of the outermost variables P indicates what the plan is.

The above formula representing planning without observability: a single se-
quence of actions has to reach the goals independently of the contingencies. In
more general cases, observations made during the execution can determine how
the plan execution is continued. This corresponds to plans with branching, and
the variables P above could represent such a plan, together with a more complex
body for the QBF to express how such a branching plan would determine which
actions are taken during the execution [Rin99].

The QBF-based representation can be generalized also in other ways. A
probabilistic extension of QBF, stochastic satisfiability or SSAT, makes it possible
to express transition probabilities associated with nondeterministic actions and
noisy observations [MLO03].

19.7.2. Planning with Partial Observability in NP

Chatterjee et al. [CCD16] observe that contingent planning with partial ob-
servability is in NP if limiting the memory available during the execution, and
considering an enumerative — rather than a state variable based — representation
of the state space. A graph represents all possible executions of all possible plans.
A given plan selects a subset of the arcs of the graph, and the plan must be chosen
so that the goals are reached on all execution of the given plan.

Despite the explicit representation of the state space as a graph, the problem
is still NP-hard because the actions (outgoing arcs) for each state cannot be chosen
independently of other states, and, instead, all states for which the observation
(and possibly memory) are the same, must have the same action. This problem of
choosing a suitable action for every observation so that goals are reached, makes
the problem harder than the corresponding fully observable problem which could
be solved in polynomial time.

First we formalize the planning problem.

Definition 19.7.1. A transition system P = (S, A4,0,0,Z,I,G) consists of

S is a finite set of states,

A is a finite set of actions,

O is a finite set of observations,

6 C S x A x S is the transition relation,
Z : S — O is the observation function,
I C S is the set of initial states, and

G C S is the set of goal states.

The transition relation (s, a’s’) expresses whether a transition from s to s is
possible with action a. The function Z associates an observation Z(s) € O with
every state s.

Plans associate an action with every observation. Executions under a given
plan include an arc from s to s’ if the observation Z(s) in s is associated with
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the action a, and (s,a,s’) € §. A valid plan is one that guarantees that for any
state reachable from an initial state, it is always possible to reach one of the goal
states.

We will next describe the reduction of this problem to SAT. A core part of
it is — similarly to the problem considered in Section 19.7.3 — the representation
of constraints expressing the constraint that a given node is (or is not) reachable
from another node. For simplicity, we only correspond the memory-free case: gen-
eralization to multiple memory states is obtained with a straightforward extension
of the formulas given here [CCD16].

The encodings rely on implicitly representing all possible plans and all pos-
sible execution graphs. The choice of a plan — the choice of actions and memory
updates for all observation and memory state combinations — induces one par-
ticular execution graph. A plan is determined by a truth-value assignment to
variables m below, and the remaining variables represent the corresponding exe-
cution graph (through the variables Arc) and its properties.

A number of propositional variables are defined to encode contingent planning
problem with bounded memory into SAT. The first two represent the functions
7 of bounded-memory plans.

e 7(0,a) means that action a is taken on observation o.

o Arc(s,s’) means that there is a transition from state s to state ', for all
(s,8') € Y where Y = {(s,s') € S x S|(s,a,s") € § for some a € A}.

e RI(s) means that s is reachable from an initial node under the current
plan.

e R%(s) means that a goal node is reachable from s under the current plan.

The arc variables determine whether a given arc (s, s’) is considered to be
present in the graph representing all executions of a given plan expressed by the
valuation of the variables 7 (o, a).

The value of 7(0,a) has to be unique for all o and a:

—(m(o,a1) Am(o,az)) (19.23)

forall o € O,a1 € A,ay € A such that a1 # as.

The function 7 has to be defined for states that are reachable: for all s € S,
if s is reachable from an initial state, then at least one of the actions executable
in s should be enabled in s and hence part of the plan.

R'(s)— \/ =(Z(s),a) (19.24)
a€X(s)
Here, X (s) = {a € A|(s,a,s") € 0, for some s'}. Whether an arc is included in
the graph of possible executions is determined as follows.

Arc(s,s') + \/ w(Z(s),a) (19.25)
a€Y (s,s’)

Here, Y(s,s") = {a € A|(s,a,s’) € §}. Finally, it is required that a goal state is
reachable from any state that is reachable from an initial state.

RI(s) — R%(s) (19.26)
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There are alternative ways of encoding these reachability constraints, includ-
ing a set of clauses and using a specialized graph constraint for reachability or
for acyclicity, and as these constraints dominate the encoding, they can have a
strong impact on the scalability of the approach [PR18].

19.7.3. Planning with Full Observability in NP

Earlier works had suggested that contingent planning in general either requires
a formalism that is harder than NP, or must be dramatically limited in terms of
the size of the plans, the length of the executions, and the compactness of the
transition system representation.

However, Geffner and Geffner [GG18] demonstrated that for a class of con-
tingent planning problems with full observability, plans and their executions can
be represented as a propositional formula even with the actions and states repre-
sented compactly in terms of state variables.

In this formula, each node of a plan is associated with atomic propositions
that describe the relevant features of the state when the execution is in that
node. This allows each satisfying assignment of the formula to represent both a
branching plan and all of its relevant executions, thereby bringing the complexity
down to NP and enabling reductions to SAT.

This approach resembles the preceding one (Section 19.7.2) in identifying
executions with a graph that is represened in the satisfying assignments of the
formula, and by relying on graph constraints to express the conditions for the
validity of a plan.

The approach seems to be limited by the requirement that all states in a
given node of the plan have to agree on the values of some of the state variables,
but many practical problems are still effectively representable in this way.
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